Suppr超能文献

隐函数作为压扁时间模型:一种新颖的平行非线性 EEG 分析技术,可以高精度地区分轻度认知障碍和阿尔茨海默病患者。

The implicit function as squashing time model: a novel parallel nonlinear EEG analysis technique distinguishing mild cognitive impairment and Alzheimer's disease subjects with high degree of accuracy.

机构信息

Semeion Research Centre of Sciences of Communication, Via Sersale, 117, 00128 Rome, Italy.

出版信息

Comput Intell Neurosci. 2007;2007:35021. doi: 10.1155/2007/35021.

Abstract

Objective. This paper presents the results obtained using a protocol based on special types of artificial neural networks (ANNs) assembled in a novel methodology able to compress the temporal sequence of electroencephalographic (EEG) data into spatial invariants for the automatic classification of mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects. With reference to the procedure reported in our previous study (2007), this protocol includes a new type of artificial organism, named TWIST. The working hypothesis was that compared to the results presented by the workgroup (2007); the new artificial organism TWIST could produce a better classification between AD and MCI. Material and methods. Resting eyes-closed EEG data were recorded in 180 AD patients and in 115 MCI subjects. The data inputs for the classification, instead of being the EEG data, were the weights of the connections within a nonlinear autoassociative ANN trained to generate the recorded data. The most relevant features were selected and coincidently the datasets were split in the two halves for the final binary classification (training and testing) performed by a supervised ANN. Results. The best results distinguishing between AD and MCI were equal to 94.10% and they are considerable better than the ones reported in our previous study ( approximately 92%) (2007). Conclusion. The results confirm the working hypothesis that a correct automatic classification of MCI and AD subjects can be obtained by extracting spatial information content of the resting EEG voltage by ANNs and represent the basis for research aimed at integrating spatial and temporal information content of the EEG.

摘要

目的。本文展示了使用基于特殊类型人工神经网络(ANNs)的协议获得的结果,该协议采用了一种新的方法,能够将脑电图(EEG)数据的时间序列压缩为空间不变量,用于自动分类轻度认知障碍(MCI)和阿尔茨海默病(AD)患者。参考我们之前的研究(2007 年)中报告的程序,该协议包括一种新型人工生物,称为 TWIST。工作假设是,与工作组(2007 年)报告的结果相比,新型人工生物 TWIST 可以在 AD 和 MCI 之间产生更好的分类。材料和方法。在 180 名 AD 患者和 115 名 MCI 患者中记录闭眼静息 EEG 数据。分类的输入数据不是 EEG 数据,而是经过训练生成记录数据的非线性自联想 ANN 内连接的权重。选择最相关的特征,并且巧合的是,数据集被分为两半,用于最终的二进制分类(训练和测试),由监督 ANN 执行。结果。区分 AD 和 MCI 的最佳结果等于 94.10%,比我们之前的研究(约 92%)(2007 年)报告的结果要好得多。结论。结果证实了工作假设,即通过提取 EEG 电压的空间信息内容,可以通过 ANNs 对 MCI 和 AD 患者进行正确的自动分类,这是研究的基础,旨在整合 EEG 的空间和时间信息内容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e7a/2246031/4c9420436e36/CIN2007-35021.004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验