Suppr超能文献

中枢神经系统白质中少突胶质前体细胞的爆发式放电和非爆发式放电类型。

Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter.

作者信息

Káradóttir Ragnhildur, Hamilton Nicola B, Bakiri Yamina, Attwell David

机构信息

Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.

出版信息

Nat Neurosci. 2008 Apr;11(4):450-6. doi: 10.1038/nn2060. Epub 2008 Mar 2.

Abstract

A defining feature of glial cells has been their inability to generate action potentials. We show here that there are two distinct types of morphologically identical oligodendrocyte precursor glial cells (OPCs) in situ in rat CNS white matter. One type expresses voltage-gated sodium and potassium channels, generates action potentials when depolarized and senses its environment by receiving excitatory and inhibitory synaptic input from axons. The other type lacks action potentials and synaptic input. We found that when OPCs suffered glutamate-mediated damage, as occurs in cerebral palsy, stroke and spinal cord injury, the action potential-generating OPCs were preferentially damaged, as they expressed more glutamate receptors, and received increased spontaneous glutamatergic synaptic input in ischemia. These data challenge the idea that only neurons generate action potentials in the CNS and imply that the development of therapies for demyelinating disorders will require defining which OPC type can carry out remyelination.

摘要

神经胶质细胞的一个决定性特征是它们无法产生动作电位。我们在此表明,在大鼠中枢神经系统白质原位存在两种形态相同的少突胶质细胞前体细胞(OPC)。一种类型表达电压门控钠通道和钾通道,去极化时产生动作电位,并通过接收来自轴突的兴奋性和抑制性突触输入来感知其环境。另一种类型则缺乏动作电位和突触输入。我们发现,当OPC遭受谷氨酸介导的损伤时,如在脑瘫、中风和脊髓损伤中发生的那样,产生动作电位的OPC会优先受损,因为它们表达更多的谷氨酸受体,并且在缺血时会接收到增加的自发性谷氨酸能突触输入。这些数据挑战了只有神经元在中枢神经系统中产生动作电位的观点,并暗示脱髓鞘疾病治疗方法的开发将需要确定哪种OPC类型能够进行髓鞘再生。

相似文献

1
Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter.
Nat Neurosci. 2008 Apr;11(4):450-6. doi: 10.1038/nn2060. Epub 2008 Mar 2.
2
Electrical signalling properties of oligodendrocyte precursor cells.
Neuron Glia Biol. 2009 May;5(1-2):3-11. doi: 10.1017/S1740925X09990202. Epub 2009 Aug 13.
5
Polydendrocytes: NG2 cells with many roles in development and repair of the CNS.
Neuroscientist. 2007 Feb;13(1):62-76. doi: 10.1177/1073858406295586.
6
A morphological and electrophysiological study on the postnatal development of oligodendrocyte precursor cells in the rat brain.
Brain Res. 2008 Dec 3;1243:27-37. doi: 10.1016/j.brainres.2008.09.029. Epub 2008 Sep 19.
8
Cytology and lineage of NG2-positive glia.
J Neurocytol. 2002 Jul-Aug;31(6-7):457-67. doi: 10.1023/a:1025735513560.
10
Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice.
J Neurosci. 2017 Oct 18;37(42):10038-10051. doi: 10.1523/JNEUROSCI.1787-17.2017. Epub 2017 Sep 12.

引用本文的文献

1
Roles of Ion Channels in Oligodendrocyte Precursor Cells: From Physiology to Pathology.
Int J Mol Sci. 2025 Jul 29;26(15):7336. doi: 10.3390/ijms26157336.
2
Whole-cell patch clamp and extracellular electrophysiology recordings in mouse brain slices.
STAR Protoc. 2025 Jul 31;6(3):104008. doi: 10.1016/j.xpro.2025.104008.
3
Physiology of Oligodendroglia.
Adv Neurobiol. 2025;43:125-153. doi: 10.1007/978-3-031-87919-7_6.
4
Evolution of Oligodendroglia and Myelin.
Adv Neurobiol. 2025;43:41-59. doi: 10.1007/978-3-031-87919-7_2.
5
Oligodendroglia and Myelin: Supporting the Connectome.
Adv Neurobiol. 2025;43:1-37. doi: 10.1007/978-3-031-87919-7_1.
6
Oligodendrogenesis in Evolution, Development and Adulthood.
Glia. 2025 Sep;73(9):1770-1783. doi: 10.1002/glia.70033. Epub 2025 May 15.
8
Sodium channels in non-excitable cells: powerful actions and therapeutic targets beyond Hodgkin and Huxley.
Trends Cell Biol. 2025 May;35(5):381-398. doi: 10.1016/j.tcb.2024.11.009. Epub 2024 Dec 31.
9
Cerebellar Purkinje Cell Activity Regulates White Matter Response and Locomotor Function after Neonatal Hypoxia.
J Neurosci. 2025 Jan 1;45(1):e0899242024. doi: 10.1523/JNEUROSCI.0899-24.2024.

本文引用的文献

2
Vesicular glutamate release from axons in white matter.
Nat Neurosci. 2007 Mar;10(3):311-20. doi: 10.1038/nn1850. Epub 2007 Feb 11.
3
Vesicular release of glutamate from unmyelinated axons in white matter.
Nat Neurosci. 2007 Mar;10(3):321-30. doi: 10.1038/nn1854. Epub 2007 Feb 11.
4
Neurotransmitter receptors in the life and death of oligodendrocytes.
Neuroscience. 2007 Apr 14;145(4):1426-38. doi: 10.1016/j.neuroscience.2006.08.070. Epub 2006 Oct 16.
5
Bidirectional control of CNS capillary diameter by pericytes.
Nature. 2006 Oct 12;443(7112):700-4. doi: 10.1038/nature05193. Epub 2006 Oct 1.
6
Development of NG2 neural progenitor cells requires Olig gene function.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7853-8. doi: 10.1073/pnas.0511001103. Epub 2006 May 8.
7
NMDA receptors are expressed in oligodendrocytes and activated in ischaemia.
Nature. 2005 Dec 22;438(7071):1162-6. doi: 10.1038/nature04302.
9
Integration of K+ and Cl- currents regulate steady-state and dynamic membrane potentials in cultured rat microglia.
J Physiol. 2005 Sep 15;567(Pt 3):869-90. doi: 10.1113/jphysiol.2005.092056. Epub 2005 Jul 14.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验