Suppr超能文献

表面活性剂耗竭后呼吸机相关性肺损伤的时空异质性

Spatial and temporal heterogeneity of ventilator-associated lung injury after surfactant depletion.

作者信息

Otto Cynthia M, Markstaller Klaus, Kajikawa Osamu, Karmrodt Jens, Syring Rebecca S, Pfeiffer Birgit, Good Virginia P, Frevert Charles W, Baumgardner James E

机构信息

Departmrnt of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J Appl Physiol (1985). 2008 May;104(5):1485-94. doi: 10.1152/japplphysiol.01089.2007. Epub 2008 Mar 6.

Abstract

Volutrauma and atelectrauma have been proposed as mechanisms of ventilator-associated lung injury, but few studies have compared their relative importance in mediating lung injury. The objective of our study was to compare the injury produced by stretch (volutrauma) vs. cyclical recruitment (atelectrauma) after surfactant depletion. In saline-lavaged rabbits, we used high tidal volume, low respiratory rate, and low positive end-expiratory pressure to produce stretch injury in nondependent lung regions and cyclical recruitment in dependent lung regions. Tidal changes in shunt fraction were assessed by measuring arterial Po(2) oscillations. After ventilating for times ranging from 0 to 6 h, lungs were excised, sectioned gravitationally, and assessed for regional injury by evaluation of edema formation, chemokine expression, upregulation of inflammatory enzyme activity, and alveolar neutrophil accumulation. Edema formation, lung tissue interleukin-8 expression, and alveolar neutrophil accumulation progressed more rapidly in dependent lung regions, whereas macrophage chemotactic protein-1 expression progressed more rapidly in nondependent lung regions. Temporal and regional heterogeneity of lung injury were substantial. In this surfactant depletion model of acute lung injury, cyclical recruitment produced more injury than stretch.

摘要

容积伤和肺不张伤已被提出作为呼吸机相关性肺损伤的机制,但很少有研究比较它们在介导肺损伤中的相对重要性。我们研究的目的是比较表面活性剂耗竭后拉伸(容积伤)与周期性复张(肺不张伤)所产生的损伤。在盐水灌洗的兔中,我们使用高潮气量、低呼吸频率和低呼气末正压在非下垂肺区域产生拉伸损伤,并在下垂肺区域产生周期性复张。通过测量动脉血氧分压振荡来评估分流分数的潮式变化。通气0至6小时后,切除肺脏,重力切片,并通过评估水肿形成、趋化因子表达、炎性酶活性上调和肺泡中性粒细胞积聚来评估局部损伤。水肿形成、肺组织白细胞介素-8表达和肺泡中性粒细胞积聚在下垂肺区域进展更快,而巨噬细胞趋化蛋白-1表达在非下垂肺区域进展更快。肺损伤的时间和局部异质性很大。在这个急性肺损伤的表面活性剂耗竭模型中,周期性复张比拉伸产生的损伤更大。

相似文献

1
Spatial and temporal heterogeneity of ventilator-associated lung injury after surfactant depletion.
J Appl Physiol (1985). 2008 May;104(5):1485-94. doi: 10.1152/japplphysiol.01089.2007. Epub 2008 Mar 6.
2
Neutrophil elastase inhibitor (sivelestat) attenuates subsequent ventilator-induced lung injury in mice.
Eur J Pharmacol. 2007 Sep 24;571(1):62-71. doi: 10.1016/j.ejphar.2007.05.053. Epub 2007 Jun 9.
5
Effects of surfactant replacement on alveolar overdistension and plasma cytokines in ventilator-induced lung injury.
Acta Anaesthesiol Scand. 2010 Mar;54(3):354-61. doi: 10.1111/j.1399-6576.2009.02124.x. Epub 2009 Sep 17.
6
Spontaneous Effort During Mechanical Ventilation: Maximal Injury With Less Positive End-Expiratory Pressure.
Crit Care Med. 2016 Aug;44(8):e678-88. doi: 10.1097/CCM.0000000000001649.
7
Therapeutic hypercapnia is not protective in the in vivo surfactant-depleted rabbit lung.
Pediatr Res. 2004 Jan;55(1):42-9. doi: 10.1203/01.PDR.0000098502.72182.55. Epub 2003 Oct 15.
10
Volutrauma, but not atelectrauma, induces systemic cytokine production by lung-marginated monocytes.
Crit Care Med. 2014 Jan;42(1):e49-57. doi: 10.1097/CCM.0b013e31829a822a.

引用本文的文献

1
In-silico CT lung phantom generated from finite-element mesh.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12928. doi: 10.1117/12.3006973. Epub 2024 Mar 29.
3
Time-Controlled Adaptive Ventilation (TCAV): a personalized strategy for lung protection.
Respir Res. 2024 Jan 18;25(1):37. doi: 10.1186/s12931-023-02615-y.
4
Modeling Ventilator-Induced Lung Injury and Neutrophil Infiltration to Infer Injury Interdependence.
Ann Biomed Eng. 2023 Dec;51(12):2837-2852. doi: 10.1007/s10439-023-03346-3. Epub 2023 Aug 17.
8
Protective ventilation in a pig model of acute lung injury: timing is as important as pressure.
J Appl Physiol (1985). 2022 Nov 1;133(5):1093-1105. doi: 10.1152/japplphysiol.00312.2022. Epub 2022 Sep 22.
9
Unshrinking the baby lung to calm the VILI vortex.
Crit Care. 2022 Aug 7;26(1):242. doi: 10.1186/s13054-022-04105-x.
10
Spatiotemporal distribution of cellular injury and leukocytes during the progression of ventilator-induced lung injury.
Am J Physiol Lung Cell Mol Physiol. 2022 Sep 1;323(3):L281-L296. doi: 10.1152/ajplung.00207.2021. Epub 2022 Jun 14.

本文引用的文献

1
Relation between shunt, aeration, and perfusion in experimental acute lung injury.
Am J Respir Crit Care Med. 2008 Feb 1;177(3):292-300. doi: 10.1164/rccm.200703-484OC. Epub 2007 Oct 11.
2
Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury.
J Appl Physiol (1985). 2007 Jan;102(1):331-9. doi: 10.1152/japplphysiol.00002.2006. Epub 2006 Sep 7.
4
Microarray analysis of regional cellular responses to local mechanical stress in acute lung injury.
Am J Physiol Lung Cell Mol Physiol. 2006 Nov;291(5):L851-61. doi: 10.1152/ajplung.00463.2005. Epub 2006 Jun 16.
5
The implications of arterial Po2 oscillations for conventional arterial blood gas analysis.
Anesth Analg. 2006 Jun;102(6):1758-64. doi: 10.1213/01.ane.0000208966.24695.30.
6
Atelectasis causes alveolar injury in nonatelectatic lung regions.
Am J Respir Crit Care Med. 2006 Aug 1;174(3):279-89. doi: 10.1164/rccm.200506-1006OC. Epub 2006 May 4.
9
The contribution of biophysical lung injury to the development of biotrauma.
Annu Rev Physiol. 2006;68:585-618. doi: 10.1146/annurev.physiol.68.072304.113443.
10
Intermittent alveolar overdistension for 30 or 240 minutes does not produce acute lung injury in normal pig lung.
J Surg Res. 2006 Apr;131(2):233-40. doi: 10.1016/j.jss.2005.11.575. Epub 2006 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验