Alva Ernesto, George Annitta, Brancaleon Lorenzo, Marucho Marcelo
Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
Polymers (Basel). 2022 Jun 16;14(12):2438. doi: 10.3390/polym14122438.
Actin filament's polyelectrolyte and hydrodynamic properties, their interactions with the biological environment, and external force fields play an essential role in their biological activities in eukaryotic cellular processes. In this article, we introduce a unique approach that combines dynamics and electrophoresis light-scattering experiments, an extended semiflexible worm-like chain model, and an asymmetric polymer length distribution theory to characterize the polyelectrolyte and hydrodynamic properties of actin filaments in aqueous electrolyte solutions. A fitting approach was used to optimize the theories and filament models for hydrodynamic conditions. We used the same sample and experimental conditions and considered several g-actin and polymerization buffers to elucidate the impact of their chemical composition, reducing agents, pH values, and ionic strengths on the filament translational diffusion coefficient, electrophoretic mobility, structure factor, asymmetric length distribution, effective filament diameter, electric charge, zeta potential, and semiflexibility. Compared to those values obtained from molecular structure models, our results revealed a lower value of the effective G-actin charge and a more significant value of the effective filament diameter due to the formation of the double layer of the electrolyte surrounding the filaments. Contrary to the data usually reported from electron micrographs, the lower values of our results for the persistence length and average contour filament length agree with the significant difference in the association rates at the filament ends that shift to sub-micro lengths, which is the maximum of the length distribution.
肌动蛋白丝的聚电解质和流体动力学性质、它们与生物环境的相互作用以及外力场在真核细胞过程中的生物活性中起着至关重要的作用。在本文中,我们介绍了一种独特的方法,该方法结合了动力学和电泳光散射实验、扩展的半柔性蠕虫状链模型以及不对称聚合物长度分布理论,以表征肌动蛋白丝在水性电解质溶液中的聚电解质和流体动力学性质。采用拟合方法来优化流体动力学条件下的理论和丝模型。我们使用相同的样品和实验条件,并考虑了几种球状肌动蛋白和聚合缓冲液,以阐明它们的化学成分、还原剂、pH值和离子强度对丝平移扩散系数、电泳迁移率、结构因子、不对称长度分布、有效丝直径、电荷、zeta电位和半柔性的影响。与从分子结构模型获得的值相比,我们的结果显示,由于丝周围电解质双层的形成,有效球状肌动蛋白电荷的值较低,而有效丝直径的值更高。与通常从电子显微照片报道的数据相反,我们结果中持续长度和平均轮廓丝长度的较低值与丝末端缔合速率的显著差异一致,丝末端缔合速率转移到亚微米长度,这是长度分布的最大值。