Suppr超能文献

正常和肿瘤性垂体组织中微血管网络的欧几里得几何和分形几何

Euclidean and fractal geometry of microvascular networks in normal and neoplastic pituitary tissue.

作者信息

Di Ieva Antonio, Grizzi Fabio, Gaetani Paolo, Goglia Umberto, Tschabitscher Manfred, Mortini Pietro, Rodriguez y Baena Riccardo

机构信息

Department of Neurosurgery, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy.

出版信息

Neurosurg Rev. 2008 Jul;31(3):271-81. doi: 10.1007/s10143-008-0127-7. Epub 2008 Mar 8.

Abstract

In geometrical terms, tumour vascularity is an exemplary anatomical system that irregularly fills a three-dimensional Euclidean space. This physical characteristic and the highly variable shapes of the vessels lead to considerable spatial and temporal heterogeneity in the delivery of oxygen, nutrients and drugs, and the removal of metabolites. Although these biological characteristics are well known, quantitative analyses of newly formed vessels in two-dimensional histological sections still fail to view their architecture as a non-Euclidean geometrical entity, thus leading to errors in visual interpretation and discordant results from different laboratories concerning the same tumour. We here review the literature concerning microvessel density estimates (a Euclidean-based approach quantifying vascularity in normal and neoplastic pituitary tissues) and compare the results. We also discuss the limitations of Euclidean quantitative analyses of vascularity and the helpfulness of a fractal geometry-based approach as a better means of quantifying normal and neoplastic pituitary microvasculature.

摘要

从几何学角度来看,肿瘤血管是一个典型的解剖系统,它不规则地填充三维欧几里得空间。这种物理特性以及血管高度可变的形状导致在氧气、营养物质和药物输送以及代谢产物清除方面存在相当大的空间和时间异质性。尽管这些生物学特性广为人知,但在二维组织学切片中对新形成血管的定量分析仍未能将其结构视为非欧几里得几何实体,从而导致视觉解读错误以及不同实验室对同一肿瘤的结果不一致。我们在此回顾有关微血管密度估计(一种基于欧几里得方法量化正常和肿瘤性垂体组织中的血管生成)的文献并比较结果。我们还讨论了基于欧几里得的血管定量分析的局限性以及基于分形几何的方法作为量化正常和肿瘤性垂体微血管更好手段的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验