Di Ieva Antonio, Grizzi Fabio, Gaetani Paolo, Goglia Umberto, Tschabitscher Manfred, Mortini Pietro, Rodriguez y Baena Riccardo
Department of Neurosurgery, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy.
Neurosurg Rev. 2008 Jul;31(3):271-81. doi: 10.1007/s10143-008-0127-7. Epub 2008 Mar 8.
In geometrical terms, tumour vascularity is an exemplary anatomical system that irregularly fills a three-dimensional Euclidean space. This physical characteristic and the highly variable shapes of the vessels lead to considerable spatial and temporal heterogeneity in the delivery of oxygen, nutrients and drugs, and the removal of metabolites. Although these biological characteristics are well known, quantitative analyses of newly formed vessels in two-dimensional histological sections still fail to view their architecture as a non-Euclidean geometrical entity, thus leading to errors in visual interpretation and discordant results from different laboratories concerning the same tumour. We here review the literature concerning microvessel density estimates (a Euclidean-based approach quantifying vascularity in normal and neoplastic pituitary tissues) and compare the results. We also discuss the limitations of Euclidean quantitative analyses of vascularity and the helpfulness of a fractal geometry-based approach as a better means of quantifying normal and neoplastic pituitary microvasculature.
从几何学角度来看,肿瘤血管是一个典型的解剖系统,它不规则地填充三维欧几里得空间。这种物理特性以及血管高度可变的形状导致在氧气、营养物质和药物输送以及代谢产物清除方面存在相当大的空间和时间异质性。尽管这些生物学特性广为人知,但在二维组织学切片中对新形成血管的定量分析仍未能将其结构视为非欧几里得几何实体,从而导致视觉解读错误以及不同实验室对同一肿瘤的结果不一致。我们在此回顾有关微血管密度估计(一种基于欧几里得方法量化正常和肿瘤性垂体组织中的血管生成)的文献并比较结果。我们还讨论了基于欧几里得的血管定量分析的局限性以及基于分形几何的方法作为量化正常和肿瘤性垂体微血管更好手段的实用性。