Suppr超能文献

用于创建微血管复杂性的生物制造策略。

Biofabrication strategies for creating microvascular complexity.

机构信息

Vascular Kinetics Laboratory, Mechanical Engineering & Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America.

出版信息

Biofabrication. 2019 Apr 18;11(3):032001. doi: 10.1088/1758-5090/ab0621.

Abstract

Design and fabrication of effective biomimetic vasculatures constitutes a relevant and yet unsolved challenge, lying at the heart of tissue repair and regeneration strategies. Even if cell growth is achieved in 3D tissue scaffolds or advanced implants, tissue viability inevitably requires vascularization, as diffusion can only transport nutrients and eliminate debris within a few hundred microns. This engineered vasculature may need to mimic the intricate branching geometry of native microvasculature, referred to herein as vascular complexity, to efficiently deliver blood and recreate critical interactions between the vascular and perivascular cells as well as parenchymal tissues. This review first describes the importance of vascular complexity in labs- and organs-on-chips, the biomechanical and biochemical signals needed to create and maintain a complex vasculature, and the limitations of current 2D, 2.5D, and 3D culture systems in recreating vascular complexity. We then critically review available strategies for design and biofabrication of complex vasculatures in cell culture platforms, labs- and organs-on-chips, and tissue engineering scaffolds, highlighting their advantages and disadvantages. Finally, challenges and future directions are outlined with the hope of inspiring researchers to create the reliable, efficient and sustainable tools needed for design and biofabrication of complex vasculatures.

摘要

设计和制造有效的仿生脉管系统是一个相关但尚未解决的挑战,它是组织修复和再生策略的核心。即使在 3D 组织支架或先进的植入物中实现了细胞生长,组织的存活也不可避免地需要血管化,因为扩散只能在几百微米的范围内输送营养物质和消除废物。这种工程化的脉管系统可能需要模拟天然微血管的复杂分支几何形状,本文称之为血管复杂性,以有效地输送血液并重新创建血管和血管周围细胞以及实质组织之间的关键相互作用。这篇综述首先描述了血管复杂性在微流控芯片实验室和器官中的重要性,以及创建和维持复杂脉管系统所需的生物力学和生化信号,以及当前 2D、2.5D 和 3D 培养系统在重现血管复杂性方面的局限性。然后,我们批判性地回顾了用于细胞培养平台、微流控芯片实验室和器官以及组织工程支架中复杂脉管设计和生物制造的现有策略,强调了它们的优缺点。最后,概述了挑战和未来方向,希望激发研究人员创造出设计和生物制造复杂脉管系统所需的可靠、高效和可持续的工具。

相似文献

5
Biofabricating the vascular tree in engineered bone tissue.在工程化骨组织中生物制造血管树。
Acta Biomater. 2023 Jan 15;156:250-268. doi: 10.1016/j.actbio.2022.08.051. Epub 2022 Aug 28.
7
Bioprinting for vascular and vascularized tissue biofabrication.用于血管和血管化组织生物制造的生物打印
Acta Biomater. 2017 Mar 15;51:1-20. doi: 10.1016/j.actbio.2017.01.035. Epub 2017 Jan 11.

引用本文的文献

1
Engineering in vitro vascular microsystems.体外血管微系统工程
Microsyst Nanoeng. 2025 May 22;11(1):100. doi: 10.1038/s41378-025-00956-w.
2
Vascularized organoid-on-a-chip: design, imaging, and analysis.血管化类器官芯片:设计、成像和分析。
Angiogenesis. 2024 May;27(2):147-172. doi: 10.1007/s10456-024-09905-z. Epub 2024 Feb 26.

本文引用的文献

10
Assessment of hydrogels for bioprinting of endothelial cells.水凝胶在血管内皮细胞生物打印中的评估。
J Biomed Mater Res A. 2018 Apr;106(4):935-947. doi: 10.1002/jbm.a.36291. Epub 2017 Nov 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验