Suppr超能文献

缺乏白细胞介素-1β受体1和肿瘤坏死因子-α受体1的小鼠的睡眠-觉醒行为及对睡眠剥夺的反应

Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.

作者信息

Baracchi Francesca, Opp Mark R

机构信息

Department of Anesthesiology, University of Michigan, 7422 Medical Sciences Building I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5615, USA.

出版信息

Brain Behav Immun. 2008 Aug;22(6):982-93. doi: 10.1016/j.bbi.2008.02.001. Epub 2008 Mar 7.

Abstract

Data indicate that interleukin (IL)-1 beta and tumor necrosis factor-alpha (TNFalpha) are involved in the regulation of non-rapid eye movement sleep (NREMS). Previous studies demonstrate that mice lacking the IL-1 beta type 1 receptor spend less time in NREMS during the light period, whereas mice lacking the p55 (type 1) receptor for TNFalpha spend less time in NREMS during the dark period. To further investigate roles for IL-1 beta and TNFalpha in sleep regulation we phenotyped sleep and responses to sleep deprivation of mice lacking both the IL-1 beta receptor 1 and TNFalpha receptor 1 (IL-1R1/TNFR1 KO). Male adult mice (IL-1R1/TNFR1 KO, n=14; B6129SF2/J, n=14) were surgically instrumented with EEG electrodes and with a thermistor to measure brain temperature. After recovery and adaptation to the recording apparatus, 48 h of undisturbed baseline recordings were obtained. Mice were then subjected to 6h sleep deprivation at light onset by gentle handling. IL-1R1/TNFR1 KO mice spent less time in NREMS during the last 6h of the dark period and less time in rapid eye movement sleep (REMS) during the light period. There were no differences between strains in the diurnal timing of delta power during NREMS. However, there were strain differences in the relative power spectra of the NREMS EEG during both the light period and the dark period. In addition, during the light period relative power in the theta frequency band of the REMS EEG differed between strains. After sleep deprivation, control mice exhibited prolonged increases in NREMS and REMS, whereas the duration of the NREMS increase was shorter and there was no increase in REMS of IL-1R1/TNFR1 KO mice. Delta power during NREMS increased in both strains after sleep deprivation, but the increase in delta power during NREMS of IL-1R1/TNFR1 KO mice was of greater magnitude and of longer duration than that observed in control mice. These results provide additional evidence that the IL-1 beta and TNFalpha cytokine systems play a role in sleep regulation and in the alterations in sleep that follow prolonged wakefulness.

摘要

数据表明,白细胞介素(IL)-1β和肿瘤坏死因子-α(TNFα)参与非快速眼动睡眠(NREMS)的调节。先前的研究表明,缺乏IL-1β1型受体的小鼠在光照期的NREMS时间减少,而缺乏TNFα的p55(1型)受体的小鼠在黑暗期的NREMS时间减少。为了进一步研究IL-1β和TNFα在睡眠调节中的作用,我们对缺乏IL-1β受体1和TNFα受体1(IL-1R1/TNFR1基因敲除)的小鼠的睡眠和对睡眠剥夺的反应进行了表型分析。成年雄性小鼠(IL-1R1/TNFR1基因敲除,n = 14;B6129SF2/J,n = 14)通过手术植入脑电图电极和热敏电阻以测量脑温。恢复并适应记录设备后,获得48小时的无干扰基线记录。然后在光照开始时通过轻柔处理使小鼠经历6小时的睡眠剥夺。IL-1R1/TNFR1基因敲除小鼠在黑暗期的最后6小时内NREMS时间减少,在光照期快速眼动睡眠(REMS)时间减少。在NREMS期间,两品系之间的δ波功率的昼夜节律没有差异。然而,在光照期和黑暗期,NREMS脑电图的相对功率谱存在品系差异。此外,在光照期,REMS脑电图的θ频段相对功率在两品系之间有所不同。睡眠剥夺后,对照小鼠的NREMS和REMS延长增加,而IL-1R1/TNFR1基因敲除小鼠的NREMS增加持续时间较短且REMS没有增加。睡眠剥夺后,两品系NREMS期间的δ波功率均增加,但IL-1R1/TNFR1基因敲除小鼠NREMS期间的δ波功率增加幅度更大且持续时间更长。这些结果提供了额外的证据,表明IL-1β和TNFα细胞因子系统在睡眠调节以及长时间清醒后的睡眠改变中发挥作用。

相似文献

2
Sleep-wake behavior and responses of interleukin-6-deficient mice to sleep deprivation.
Brain Behav Immun. 2005 Jan;19(1):28-39. doi: 10.1016/j.bbi.2004.02.003.
3
Sleep-wake behavior and responses to sleep deprivation and immune challenge of protein kinase RNA-activated knockout mice.
Brain Behav Immun. 2024 Oct;121:74-86. doi: 10.1016/j.bbi.2024.07.027. Epub 2024 Jul 21.
4
Sleep and body temperature in TNFα knockout mice: The effects of sleep deprivation, β3-AR stimulation and exogenous TNFα.
Brain Behav Immun. 2019 Oct;81:260-271. doi: 10.1016/j.bbi.2019.06.022. Epub 2019 Jun 17.
5
Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.
PLoS One. 2014 Feb 20;9(2):e89432. doi: 10.1371/journal.pone.0089432. eCollection 2014.
6
Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice.
Am J Physiol Regul Integr Comp Physiol. 2007 Jul;293(1):R510-7. doi: 10.1152/ajpregu.00155.2007. Epub 2007 Apr 4.

引用本文的文献

1
Arteries are finely tuned thermosensors regulating myogenic tone and blood flow.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2503186122. doi: 10.1073/pnas.2503186122. Epub 2025 May 20.
2
Localization of brain neuronal IL-1R1 reveals specific neural circuitries responsive to immune signaling.
J Neuroinflammation. 2024 Nov 19;21(1):303. doi: 10.1186/s12974-024-03287-1.
3
Sleep-wake behavior and responses to sleep deprivation and immune challenge of protein kinase RNA-activated knockout mice.
Brain Behav Immun. 2024 Oct;121:74-86. doi: 10.1016/j.bbi.2024.07.027. Epub 2024 Jul 21.
4
Cerebral Gray Matter May Not Explain Sleep Slow-Wave Characteristics after Severe Brain Injury.
J Neurosci. 2024 Aug 7;44(32):e1306232024. doi: 10.1523/JNEUROSCI.1306-23.2024.
5
Potential Role of Sleep Deficiency in Inducing Immune Dysfunction.
Biomedicines. 2022 Sep 1;10(9):2159. doi: 10.3390/biomedicines10092159.
6
Neuroinflammation, Sleep, and Circadian Rhythms.
Front Cell Infect Microbiol. 2022 Mar 22;12:853096. doi: 10.3389/fcimb.2022.853096. eCollection 2022.
8
Theta-gamma coupling emerges from spatially heterogeneous cholinergic neuromodulation.
PLoS Comput Biol. 2021 Jul 30;17(7):e1009235. doi: 10.1371/journal.pcbi.1009235. eCollection 2021 Jul.
9
Tea polyphenols protect learning and memory in sleep-deprived mice by promoting AMPA receptor internalization.
Neuroreport. 2020 Aug 12;31(12):857-864. doi: 10.1097/WNR.0000000000001462.
10
Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury.
Neurobiol Sleep Circadian Rhythms. 2016 Apr 19;2:71-84. doi: 10.1016/j.nbscr.2016.03.001. eCollection 2017 Jan.

本文引用的文献

1
Effect of environmental temperature on sleep, locomotor activity, core body temperature and immune responses of C57BL/6J mice.
Brain Behav Immun. 2007 Oct;21(7):975-87. doi: 10.1016/j.bbi.2007.03.007. Epub 2007 Apr 27.
2
Cytokine, sickness behavior, and depression.
Neurol Clin. 2006 Aug;24(3):441-60. doi: 10.1016/j.ncl.2006.03.003.
3
Effects of interleukin-1beta on hippocampal glutamate and GABA releases associated with Ca2+-induced Ca2+ releasing systems.
Epilepsy Res. 2006 Oct;71(2-3):107-16. doi: 10.1016/j.eplepsyres.2006.05.017. Epub 2006 Jun 27.
4
Interleukin-1 beta modulates AMPA receptor expression and phosphorylation in hippocampal neurons.
J Neuroimmunol. 2006 Jun;175(1-2):97-106. doi: 10.1016/j.jneuroim.2006.03.001. Epub 2006 Apr 19.
7
Cytokines and sleep.
Sleep Med Rev. 2005 Oct;9(5):355-64. doi: 10.1016/j.smrv.2005.01.002.
8
Thermoregulatory responses to lipopolysaccharide in the mouse: dependence on the dose and ambient temperature.
Am J Physiol Regul Integr Comp Physiol. 2005 Nov;289(5):R1244-52. doi: 10.1152/ajpregu.00370.2005. Epub 2005 Aug 4.
9
Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha.
J Neurosci. 2005 Mar 23;25(12):3219-28. doi: 10.1523/JNEUROSCI.4486-04.2005.
10
Sleep-wake behavior and responses of interleukin-6-deficient mice to sleep deprivation.
Brain Behav Immun. 2005 Jan;19(1):28-39. doi: 10.1016/j.bbi.2004.02.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验