文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

蛋白激酶 RNA 激活型敲除小鼠的睡眠-觉醒行为及对睡眠剥夺和免疫挑战的反应。

Sleep-wake behavior and responses to sleep deprivation and immune challenge of protein kinase RNA-activated knockout mice.

机构信息

Department of Integrative Physiology, University of Colorado Boulder, USA.

Institute for Behavioral Genetics, University of Colorado Boulder, USA.

出版信息

Brain Behav Immun. 2024 Oct;121:74-86. doi: 10.1016/j.bbi.2024.07.027. Epub 2024 Jul 21.


DOI:10.1016/j.bbi.2024.07.027
PMID:39043346
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11563030/
Abstract

Protein Kinase RNA-activated (PKR) is an enzyme that plays a role in many systemic processes, including modulation of inflammation, and is implicated in neurodegenerative diseases, such as Alzheimer's disease (AD). PKR phosphorylation results in the production of several cytokines involved in the regulation / modulation of sleep, including interleukin-1β, tumor necrosis factor-α and interferon-γ. We hypothesized targeting PKR would alter spontaneous sleep of mice, attenuate responses to sleep deprivation, and inhibit responses to immune challenge. To test these hypotheses, we determined the sleep-wake phenotype of mice lacking PKR (knockout; PKR) during undisturbed baseline conditions; in responses to six hours of sleep deprivation; and after immune challenge with lipopolysaccharide (LPS). Adult male mice (C57BL/6J, n = 7; PKR, n = 7) were surgically instrumented with EEG recording electrodes and an intraperitoneal microchip to record core body temperature. During undisturbed baseline conditions, PKR mice spent more time in non-rapid eye movement sleep (NREMS) and rapid-eye movement sleep (REMS), and less time awake at the beginning of the dark period of the light:dark cycle. Delta power during NREMS, a measure of sleep depth, was less in PKR mice during the dark period, and core body temperatures were lower during the light period. Both mouse strains responded to sleep deprivation with increased NREMS and REMS, although these changes did not differ substantively between strains. The initial increase in delta power during NREMS after sleep deprivation was greater in PKR mice, suggesting a faster buildup of sleep pressure with prolonged waking. Immune challenge with LPS increased NREMS and inhibited REMS to the same extent in both mouse strains, whereas the initial LPS-induced suppression of delta power during NREMS was greater in PKR mice. Because sleep regulatory and immune responsive systems in brain are redundant and overlapping, other mediators and signaling pathways in addition to PKR are involved in the responses to acute sleep deprivation and LPS immune challenge.

摘要

蛋白激酶 RNA 激活(PKR)是一种在许多全身过程中发挥作用的酶,包括炎症调节,并与神经退行性疾病如阿尔茨海默病(AD)有关。PKR 磷酸化导致几种参与睡眠调节/调制的细胞因子的产生,包括白细胞介素-1β、肿瘤坏死因子-α和干扰素-γ。我们假设靶向 PKR 将改变小鼠的自发睡眠,减弱对睡眠剥夺的反应,并抑制对免疫挑战的反应。为了验证这些假设,我们在未受干扰的基线条件下确定了缺乏 PKR(敲除;PKR)的小鼠的睡眠-觉醒表型;在六小时睡眠剥夺后的反应;以及在脂多糖(LPS)免疫挑战后的反应。成年雄性小鼠(C57BL/6J,n=7;PKR,n=7)接受了 EEG 记录电极和腹腔内微芯片的手术植入,以记录核心体温。在未受干扰的基线条件下,PKR 小鼠在黑暗期的非快速眼动睡眠(NREMS)和快速眼动睡眠(REMS)中花费更多时间,在觉醒时花费更少时间。NREMS 期间的 delta 功率,睡眠深度的一种衡量标准,在黑暗期 PKR 小鼠中较低,而在光照期核心体温较低。两种小鼠品系对睡眠剥夺的反应都是 NREMS 和 REMS 增加,尽管这些变化在品系之间没有实质性差异。睡眠剥夺后 NREMS 期间 delta 功率的初始增加在 PKR 小鼠中更大,这表明在清醒时间延长时,睡眠压力的建立更快。LPS 免疫挑战以相同的程度增加了两种小鼠品系的 NREMS 并抑制了 REMS,而 PKR 小鼠中 NREMS 期间初始 LPS 诱导的 delta 功率抑制更大。由于大脑中的睡眠调节和免疫反应系统是冗余和重叠的,因此除了 PKR 之外,其他介质和信号通路也参与了对急性睡眠剥夺和 LPS 免疫挑战的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/56246a812f9c/nihms-2028694-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/ed56efce8467/nihms-2028694-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/c98d6523bcd9/nihms-2028694-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/91011ef1df7a/nihms-2028694-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/0daa0abeaf47/nihms-2028694-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/732a76d4afa4/nihms-2028694-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/0540b32cab42/nihms-2028694-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/56246a812f9c/nihms-2028694-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/ed56efce8467/nihms-2028694-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/c98d6523bcd9/nihms-2028694-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/91011ef1df7a/nihms-2028694-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/0daa0abeaf47/nihms-2028694-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/732a76d4afa4/nihms-2028694-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/0540b32cab42/nihms-2028694-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed6/11563030/56246a812f9c/nihms-2028694-f0007.jpg

相似文献

[1]
Sleep-wake behavior and responses to sleep deprivation and immune challenge of protein kinase RNA-activated knockout mice.

Brain Behav Immun. 2024-10

[2]
Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.

Brain Behav Immun. 2008-8

[3]
Sleep-wake behavior and responses of interleukin-6-deficient mice to sleep deprivation.

Brain Behav Immun. 2005-1

[4]
Dynamic changes in sleep architecture in a mouse model of acute kidney injury transitioning to chronic kidney disease.

Front Neurosci. 2025-7-3

[5]
Sleep EEG signatures in mouse models of 15q11.2-13.1 duplication (Dup15q) syndrome.

J Neurodev Disord. 2024-7-16

[6]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[7]
The effects of diazepam on sleep depend on the photoperiod.

Acta Pharmacol Sin. 2025-4

[8]
Pharmacotherapies for sleep disturbances in dementia.

Cochrane Database Syst Rev. 2016-11-16

[9]
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer's Disease.

IEEE J Transl Eng Health Med. 2025-4-10

[10]
Diurnal variation of lipopolysaccharide-induced alterations in sleep and body temperature of interleukin-6-deficient mice.

Brain Behav Immun. 2005-1

引用本文的文献

[1]
Dynamic changes in sleep architecture in a mouse model of acute kidney injury transitioning to chronic kidney disease.

Front Neurosci. 2025-7-3

[2]
Dynamic changes in peripheral inflammation as a risk factor for perioperative sleep disturbances in elderly patients undergoing laparoscopic hepatobiliary surgery.

Front Neurol. 2025-4-16

[3]
Interferon Regulatory Factors as a Potential Therapeutic Target for Neuroinflammation: A Focus on Alzheimer's Disease.

Int J Mol Sci. 2025-3-23

本文引用的文献

[1]
Immune-endocrine interactions in the pathophysiology of sleep-wake disturbances following traumatic brain injury: A narrative review.

Brain Res Bull. 2022-7

[2]
Protein Kinase R in Bacterial Infections: Friend or Foe?

Front Immunol. 2021

[3]
A tale of two proteins: PACT and PKR and their roles in inflammation.

FEBS J. 2021-11

[4]
The role of host eIF2α in viral infection.

Virol J. 2020-7-23

[5]
The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4.

Neuron. 2019-9-12

[6]
PKR: A Kinase to Remember.

Front Mol Neurosci. 2019-1-9

[7]
Restoring synaptic plasticity and memory in mouse models of Alzheimer's disease by PKR inhibition.

Mol Brain. 2017-12-13

[8]
Sleep, Cognitive impairment, and Alzheimer's disease: A Systematic Review and Meta-Analysis.

Sleep. 2017-1-1

[9]
Sleep in Alzheimer's Disease - Beyond Amyloid.

Neurobiol Sleep Circadian Rhythms. 2017-1

[10]
Diurnal Variation of Circulating Interleukin-6 in Humans: A Meta-Analysis.

PLoS One. 2016-11-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索