Suppr超能文献

胃电活动产生的模拟磁活动的个体间变异性比较与分析。

Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity.

作者信息

Komuro Rié, Cheng Leo K, Pullan Andrew J

机构信息

Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.

出版信息

Ann Biomed Eng. 2008 Jun;36(6):1049-59. doi: 10.1007/s10439-008-9480-5. Epub 2008 Mar 11.

Abstract

Electrogastrograms (EGGs) produced from gastric electrical activity (GEA) are used as a non-invasive method to aid in the assessment of a subject's gastric condition. It has been documented that recordings of the magnetic activity generated from GEA are more reliable. Typically, with magnetic measurements of GEA, only activity perpendicular to the body is recorded. Also, external anatomical landmarks are used to position the magnetic recording devices, SQUIDs, (Superconducting Quantum Interference Devices) over the stomach with no allowance made for body habitus. In the work presented here, GEA and its corresponding magnetic activity are simulated. Using these data, we investigate the effects of using a standard SQUID location as well as a customized SQUID position and the contribution the magnetic component perpendicular to the body makes to the magnetic field. We also explore the effects of the stomach wall thickness on the resultant magnetic fields. The simulated results show that the thicker the wall, the larger the magnitude of the magnetic field holding the same signal patterns. We conclude that most of the magnetic activity arising from GEA occurs in a plane parallel to the anterior body. We also conclude that using a standard SQUID position can be suboptimal.

摘要

由胃电活动(GEA)产生的胃电图(EGG)被用作一种非侵入性方法,以辅助评估受试者的胃部状况。据记载,GEA产生的磁活动记录更为可靠。通常,在对GEA进行磁测量时,只记录垂直于身体的活动。此外,外部解剖标志用于将磁记录设备,即超导量子干涉装置(SQUID)放置在胃部上方,而未考虑身体体型因素。在本文所展示的工作中,对GEA及其相应的磁活动进行了模拟。利用这些数据,我们研究了使用标准SQUID位置以及定制SQUID位置的影响,以及垂直于身体的磁分量对磁场的贡献。我们还探讨了胃壁厚度对合成磁场的影响。模拟结果表明,在保持相同信号模式的情况下,壁越厚,磁场强度越大。我们得出结论,GEA产生的大部分磁活动发生在与身体前侧平行的平面内。我们还得出结论,使用标准SQUID位置可能并非最佳选择。

相似文献

8
Volume conductor effects on simulated magnetogastrograms.容积导体对模拟胃磁图的影响。
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4929-32. doi: 10.1109/IEMBS.2009.5332716.

引用本文的文献

4
Multiscale modeling methods in biomechanics.生物力学中的多尺度建模方法。
Wiley Interdiscip Rev Syst Biol Med. 2017 May;9(3). doi: 10.1002/wsbm.1375. Epub 2017 Jan 19.
7
Effects of volume conductor and source configuration on simulated magnetogastrograms.容积导体和源配置对模拟胃磁图的影响。
Phys Med Biol. 2010 Nov 21;55(22):6881-95. doi: 10.1088/0031-9155/55/22/018. Epub 2010 Nov 3.
8
Gastrointestinal system.消化系统。
Wiley Interdiscip Rev Syst Biol Med. 2010 Jan-Feb;2(1):65-79. doi: 10.1002/wsbm.19.
9
Volume conductor effects on simulated magnetogastrograms.容积导体对模拟胃磁图的影响。
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4929-32. doi: 10.1109/IEMBS.2009.5332716.

本文引用的文献

3
Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.胃慢波时空参数的生物磁特性
Neurogastroenterol Motil. 2006 Aug;18(8):619-31. doi: 10.1111/j.1365-2982.2006.00794.x.
4
An integrative software package for gastrointestinal biomagnetic data acquisition and analysis using SQUID magnetometers.
Comput Methods Programs Biomed. 2006 Aug;83(2):83-94. doi: 10.1016/j.cmpb.2006.03.006. Epub 2006 Jul 18.
7
An anatomical model of the gastric system for producing bioelectric and biomagnetic fields.
Physiol Meas. 2004 Aug;25(4):849-61. doi: 10.1088/0967-3334/25/4/006.
8
Modelling gastrointestinal bioelectric activity.模拟胃肠道生物电活动。
Prog Biophys Mol Biol. 2004 Jun-Jul;85(2-3):523-50. doi: 10.1016/j.pbiomolbio.2004.02.003.
10
A spatio-temporal dipole simulation of gastrointestinal magnetic fields.胃肠道磁场的时空偶极子模拟
IEEE Trans Biomed Eng. 2003 Jul;50(7):836-47. doi: 10.1109/TBME.2003.813549.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验