Suppr超能文献

基于二肽的镍超氧化物歧化酶模型:溶剂效应突出了 Ni-S 键合和活性位点稳定的关键作用。

Dipeptide-based models of nickel superoxide dismutase: solvent effects highlight a critical role to Ni-S bonding and active site stabilization.

机构信息

Department of Chemistry, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, USA.

出版信息

Inorg Chem. 2011 Oct 17;50(20):10460-71. doi: 10.1021/ic2016462. Epub 2011 Sep 20.

Abstract

Nickel superoxide dismutase (Ni-SOD) catalyzes the disproportionation of the superoxide radical to O(2) and H(2)O(2) utilizing the Ni(III/II) redox couple. The Ni center in Ni-SOD resides in an unusual coordination environment that is distinct from other SODs. In the reduced state (Ni-SOD(red)), Ni(II) is ligated to a primary amine-N from His1, anionic carboxamido-N/thiolato-S from Cys2, and a second thiolato-S from Cys6 to complete a NiN(2)S(2) square-planar coordination motif. Utilizing the dipeptide N(2)S(2-) ligand, H(2)N-Gly-l-Cys-OMe (GC-OMeH(2)), an accurate model of the structural and electronic contributions provided by His1 and Cys2 in Ni-SOD(red), we constructed the dinuclear sulfur-bridged metallosynthon, [Ni(2)(GC-OMe)(2)] (1). From 1 we prepared the following monomeric Ni(II)-N(2)S(2) complexes: K[Ni(GC-OMe)(SC(6)H(4)-p-Cl)] (2), K[Ni(GC-OMe)(S(t)Bu)] (3), K[Ni(GC-OMe)(SC(6)H(4)-p-OMe)] (4), and K[Ni(GC-OMe)(SNAc)] (5). The design strategy in utilizing GC-OMe(2-) is analogous to one which we reported before (see Inorg. Chem. 2009, 48, 5620 and Inorg. Chem. 2010, 49, 7080) where Ni-SOD(red) active site mimics can be assembled at will with electronically variant RS(-) ligands. Discussed herein is our initial account pertaining to the aqueous behavior of isolable, small-molecule Ni-SOD model complexes (non-maquette based). Spectroscopic (FTIR, UV-vis, ESI-MS, XAS) and electrochemical (CV) measurements suggest that 2-5 successfully simulate many of the electronic features of Ni-SOD(red). Furthermore, the aqueous studies reveal a dynamic behavior with regard to RS(-) lability and bridging interactions, suggesting a stabilizing role brought about by the protein architecture.

摘要

镍超氧化物歧化酶(Ni-SOD)利用 Ni(III/II) 氧化还原对将超氧自由基歧化生成 O(2) 和 H(2)O(2)。Ni-SOD 中的 Ni 中心位于一种不同寻常的配位环境中,与其他 SOD 不同。在还原状态(Ni-SOD(red))下,Ni(II)与 His1 的伯胺-N、Cys2 的阴离子羧酰胺-N/硫醇-S 和 Cys6 的第二个硫醇-S 配位,形成 NiN(2)S(2) 平面四方配位模式。利用二肽 N(2)S(2-) 配体 H(2)N-Gly-l-Cys-OMe(GC-OMeH(2)),我们构建了双核硫桥金属缩合物 [Ni(2)(GC-OMe)(2)](1),它是 Ni-SOD(red) 中 His1 和 Cys2 提供的结构和电子贡献的精确模型。从 1 中我们制备了以下单核 Ni(II)-N(2)S(2) 配合物:K[Ni(GC-OMe)(SC(6)H(4)-p-Cl)](2)、K[Ni(GC-OMe)(S(t)Bu)](3)、K[Ni(GC-OMe)(SC(6)H(4)-p-OMe)](4)和 K[Ni(GC-OMe)(SNAc)](5)。利用 GC-OMe(2-) 的设计策略类似于我们之前报道的策略(参见 Inorg. Chem. 2009, 48, 5620 和 Inorg. Chem. 2010, 49, 7080),其中可以随意组装具有电子变体 RS(-) 配体的 Ni-SOD(red) 活性位点模拟物。本文介绍了我们对可分离小分子 Ni-SOD 模型配合物(非模型)在水溶液中的行为的初步研究。光谱(FTIR、UV-vis、ESI-MS、XAS)和电化学(CV)测量表明,2-5 成功模拟了 Ni-SOD(red) 的许多电子特征。此外,水溶液研究揭示了 RS(-) 配体的不稳定性和桥接相互作用的动态行为,表明蛋白质结构带来了稳定性。

相似文献

6
Toward functional Ni-SOD biomimetics: achieving a structural/electronic correlation with redox dynamics.
Inorg Chem. 2011 Oct 3;50(19):9216-8. doi: 10.1021/ic201822f. Epub 2011 Sep 2.
8
Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics.
Acc Chem Res. 2014 Aug 19;47(8):2332-41. doi: 10.1021/ar500060s. Epub 2014 May 13.
9
Synthetic analogues of nickel superoxide dismutase: a new role for nickel in biology.
Biochemistry. 2013 Jan 8;52(1):4-18. doi: 10.1021/bi3014533. Epub 2012 Dec 26.
10
A novel square-planar Ni(II) complex with an amino-carboxamido-dithiolato-type ligand as an active-site model of NiSOD.
Inorg Chem. 2014 Jul 7;53(13):6512-23. doi: 10.1021/ic402574d. Epub 2014 Jun 18.

引用本文的文献

1
Oxygen uptake in complexes related to [NiFeS]- and [NiFeSe]-hydrogenase active sites.
Chem Sci. 2018 Nov 5;10(5):1368-1373. doi: 10.1039/c8sc04436h. eCollection 2019 Feb 7.
2
Simultaneous nitrosylation and N-nitrosation of a Ni-thiolate model complex of Ni-containing SOD.
Chem Sci. 2018 Sep 17;9(45):8567-8574. doi: 10.1039/c8sc03321h. eCollection 2018 Dec 7.
3
Accessing Ni(III)-thiolate versus Ni(II)-thiyl bonding in a family of Ni-N2S2 synthetic models of NiSOD.
Inorg Chem. 2015 Apr 20;54(8):3815-28. doi: 10.1021/ic503124f. Epub 2015 Apr 2.
4
Direct measurement of the Mn(II) hydration state in metal complexes and metalloproteins through 17O NMR line widths.
J Am Chem Soc. 2013 Dec 11;135(49):18600-8. doi: 10.1021/ja4094132. Epub 2013 Oct 24.
5
Embedding the Ni-SOD mimetic Ni-NCC within a polypeptide sequence alters the specificity of the reaction pathway.
Inorg Chem. 2013 Jan 7;52(1):77-83. doi: 10.1021/ic301175f. Epub 2012 Dec 10.
6
Controlling the chiral inversion reaction of the metallopeptide Ni-asparagine-cysteine-cysteine with dioxygen.
Inorg Chem. 2012 Sep 17;51(18):10055-63. doi: 10.1021/ic301717q. Epub 2012 Aug 28.

本文引用的文献

1
First Isolation and Structural Characterization of a Nickel(III) Complex Containing Aliphatic Thiolate Donors.
Angew Chem Int Ed Engl. 1998 Feb 16;37(3):360-363. doi: 10.1002/(SICI)1521-3773(19980216)37:3<360::AID-ANIE360>3.0.CO;2-P.
9
Nickel superoxide dismutase: structural and functional roles of Cys2 and Cys6.
J Biol Inorg Chem. 2010 Jun;15(5):795-807. doi: 10.1007/s00775-010-0645-y. Epub 2010 Mar 24.
10
Novel tripeptide model of nickel superoxide dismutase.
Inorg Chem. 2010 Jan 18;49(2):362-4. doi: 10.1021/ic901828m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验