Department of Chemistry, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, USA.
Inorg Chem. 2011 Oct 17;50(20):10460-71. doi: 10.1021/ic2016462. Epub 2011 Sep 20.
Nickel superoxide dismutase (Ni-SOD) catalyzes the disproportionation of the superoxide radical to O(2) and H(2)O(2) utilizing the Ni(III/II) redox couple. The Ni center in Ni-SOD resides in an unusual coordination environment that is distinct from other SODs. In the reduced state (Ni-SOD(red)), Ni(II) is ligated to a primary amine-N from His1, anionic carboxamido-N/thiolato-S from Cys2, and a second thiolato-S from Cys6 to complete a NiN(2)S(2) square-planar coordination motif. Utilizing the dipeptide N(2)S(2-) ligand, H(2)N-Gly-l-Cys-OMe (GC-OMeH(2)), an accurate model of the structural and electronic contributions provided by His1 and Cys2 in Ni-SOD(red), we constructed the dinuclear sulfur-bridged metallosynthon, [Ni(2)(GC-OMe)(2)] (1). From 1 we prepared the following monomeric Ni(II)-N(2)S(2) complexes: K[Ni(GC-OMe)(SC(6)H(4)-p-Cl)] (2), K[Ni(GC-OMe)(S(t)Bu)] (3), K[Ni(GC-OMe)(SC(6)H(4)-p-OMe)] (4), and K[Ni(GC-OMe)(SNAc)] (5). The design strategy in utilizing GC-OMe(2-) is analogous to one which we reported before (see Inorg. Chem. 2009, 48, 5620 and Inorg. Chem. 2010, 49, 7080) where Ni-SOD(red) active site mimics can be assembled at will with electronically variant RS(-) ligands. Discussed herein is our initial account pertaining to the aqueous behavior of isolable, small-molecule Ni-SOD model complexes (non-maquette based). Spectroscopic (FTIR, UV-vis, ESI-MS, XAS) and electrochemical (CV) measurements suggest that 2-5 successfully simulate many of the electronic features of Ni-SOD(red). Furthermore, the aqueous studies reveal a dynamic behavior with regard to RS(-) lability and bridging interactions, suggesting a stabilizing role brought about by the protein architecture.
镍超氧化物歧化酶(Ni-SOD)利用 Ni(III/II) 氧化还原对将超氧自由基歧化生成 O(2) 和 H(2)O(2)。Ni-SOD 中的 Ni 中心位于一种不同寻常的配位环境中,与其他 SOD 不同。在还原状态(Ni-SOD(red))下,Ni(II)与 His1 的伯胺-N、Cys2 的阴离子羧酰胺-N/硫醇-S 和 Cys6 的第二个硫醇-S 配位,形成 NiN(2)S(2) 平面四方配位模式。利用二肽 N(2)S(2-) 配体 H(2)N-Gly-l-Cys-OMe(GC-OMeH(2)),我们构建了双核硫桥金属缩合物 [Ni(2)(GC-OMe)(2)](1),它是 Ni-SOD(red) 中 His1 和 Cys2 提供的结构和电子贡献的精确模型。从 1 中我们制备了以下单核 Ni(II)-N(2)S(2) 配合物:K[Ni(GC-OMe)(SC(6)H(4)-p-Cl)](2)、K[Ni(GC-OMe)(S(t)Bu)](3)、K[Ni(GC-OMe)(SC(6)H(4)-p-OMe)](4)和 K[Ni(GC-OMe)(SNAc)](5)。利用 GC-OMe(2-) 的设计策略类似于我们之前报道的策略(参见 Inorg. Chem. 2009, 48, 5620 和 Inorg. Chem. 2010, 49, 7080),其中可以随意组装具有电子变体 RS(-) 配体的 Ni-SOD(red) 活性位点模拟物。本文介绍了我们对可分离小分子 Ni-SOD 模型配合物(非模型)在水溶液中的行为的初步研究。光谱(FTIR、UV-vis、ESI-MS、XAS)和电化学(CV)测量表明,2-5 成功模拟了 Ni-SOD(red) 的许多电子特征。此外,水溶液研究揭示了 RS(-) 配体的不稳定性和桥接相互作用的动态行为,表明蛋白质结构带来了稳定性。