Guadayol Òscar, Schuech Rudi, Humphries Stuart
Mediterranean Institute for Advanced Studies, IMEDEA (UIB-CSIC), Esporles, Spain.
Department of Mechanical Engineering, Santa Clara University, Santa Clara, California, USA.
Environ Microbiol. 2024 Dec;26(12):e70021. doi: 10.1111/1462-2920.70021.
Elongated morphologies are prevalent among motile bacterioplankton in aquatic systems. This is often attributed to enhanced chemotactic ability, but how long is best? We hypothesized the existence of an optimal cell length for efficient chemotaxis resulting from shape-imposed physical constraints acting on the trade-off between rapid exploration versus efficient exploitation of nutrient sources. To test this hypothesis, we evaluated the chemotactic performance of elongated cephalexin-treated Escherichia coli towards α-methyl-aspartate in a microfluidic device creating linear, stable and quiescent chemical gradients. Our experiments showed cells of intermediate length aggregating most tightly to the chemoattractant source. A sensitivity analysis of an Individual-Based-Model replicating these results showed that 1) cells of intermediate length are optimal at transient states, whereas at steady state longest cells are best, 2) poor chemotactic performance of very short cells is caused by directionality loss, and 3) long cells are penalized by brief, slow runs. Finally, we evaluated chemotactic performance of cells of different length with simulations of a phycosphere, and found that long cells swimming in a run-and-reverse pattern with extended runs and moderate speeds are most efficient in this microenvironment. Overall, our results suggest that the stability of the chemical landscape plays a role in cell-size selection.
细长形态在水生系统中的游动细菌浮游生物中很普遍。这通常归因于趋化能力的增强,但多长才是最佳的呢?我们假设存在一个最佳细胞长度,以实现高效趋化,这是由于形状施加的物理限制作用于营养源的快速探索与有效利用之间的权衡。为了验证这一假设,我们在一个产生线性、稳定和静态化学梯度的微流控装置中,评估了经头孢氨苄处理的细长型大肠杆菌对α-甲基天冬氨酸的趋化性能。我们的实验表明,中等长度的细胞最紧密地聚集在趋化剂源处。对复制这些结果的基于个体的模型进行敏感性分析表明:1)中等长度的细胞在瞬态状态下是最优的,而在稳态下最长的细胞是最优的;2)非常短的细胞趋化性能差是由方向性丧失引起的;3)长细胞因短暂、缓慢的游动而受到惩罚。最后,我们通过对藻球的模拟评估了不同长度细胞的趋化性能,发现在这种微环境中,以长游动和适度速度游动并呈游动-反向模式的长细胞效率最高。总体而言,我们的结果表明化学环境的稳定性在细胞大小选择中起作用。