Suppr超能文献

趋化性浮游细菌中探索与利用的最佳细胞长度

Optimal Cell Length for Exploration and Exploitation in Chemotactic Planktonic Bacteria.

作者信息

Guadayol Òscar, Schuech Rudi, Humphries Stuart

机构信息

Mediterranean Institute for Advanced Studies, IMEDEA (UIB-CSIC), Esporles, Spain.

Department of Mechanical Engineering, Santa Clara University, Santa Clara, California, USA.

出版信息

Environ Microbiol. 2024 Dec;26(12):e70021. doi: 10.1111/1462-2920.70021.

Abstract

Elongated morphologies are prevalent among motile bacterioplankton in aquatic systems. This is often attributed to enhanced chemotactic ability, but how long is best? We hypothesized the existence of an optimal cell length for efficient chemotaxis resulting from shape-imposed physical constraints acting on the trade-off between rapid exploration versus efficient exploitation of nutrient sources. To test this hypothesis, we evaluated the chemotactic performance of elongated cephalexin-treated Escherichia coli towards α-methyl-aspartate in a microfluidic device creating linear, stable and quiescent chemical gradients. Our experiments showed cells of intermediate length aggregating most tightly to the chemoattractant source. A sensitivity analysis of an Individual-Based-Model replicating these results showed that 1) cells of intermediate length are optimal at transient states, whereas at steady state longest cells are best, 2) poor chemotactic performance of very short cells is caused by directionality loss, and 3) long cells are penalized by brief, slow runs. Finally, we evaluated chemotactic performance of cells of different length with simulations of a phycosphere, and found that long cells swimming in a run-and-reverse pattern with extended runs and moderate speeds are most efficient in this microenvironment. Overall, our results suggest that the stability of the chemical landscape plays a role in cell-size selection.

摘要

细长形态在水生系统中的游动细菌浮游生物中很普遍。这通常归因于趋化能力的增强,但多长才是最佳的呢?我们假设存在一个最佳细胞长度,以实现高效趋化,这是由于形状施加的物理限制作用于营养源的快速探索与有效利用之间的权衡。为了验证这一假设,我们在一个产生线性、稳定和静态化学梯度的微流控装置中,评估了经头孢氨苄处理的细长型大肠杆菌对α-甲基天冬氨酸的趋化性能。我们的实验表明,中等长度的细胞最紧密地聚集在趋化剂源处。对复制这些结果的基于个体的模型进行敏感性分析表明:1)中等长度的细胞在瞬态状态下是最优的,而在稳态下最长的细胞是最优的;2)非常短的细胞趋化性能差是由方向性丧失引起的;3)长细胞因短暂、缓慢的游动而受到惩罚。最后,我们通过对藻球的模拟评估了不同长度细胞的趋化性能,发现在这种微环境中,以长游动和适度速度游动并呈游动-反向模式的长细胞效率最高。总体而言,我们的结果表明化学环境的稳定性在细胞大小选择中起作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc2c/11659635/c9b9fbd2d7dc/EMI-26-e70021-g011.jpg

相似文献

1
Optimal Cell Length for Exploration and Exploitation in Chemotactic Planktonic Bacteria.
Environ Microbiol. 2024 Dec;26(12):e70021. doi: 10.1111/1462-2920.70021.
2
Multiplexed microfluidic screening of bacterial chemotaxis.
Elife. 2023 Jul 24;12:e85348. doi: 10.7554/eLife.85348.
3
Remodels the Chemotaxis Pathway for Swarming.
mBio. 2019 Mar 19;10(2):e00316-19. doi: 10.1128/mBio.00316-19.
5
The bacterial chemotactic response reflects a compromise between transient and steady-state behavior.
Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9150-5. doi: 10.1073/pnas.0407659102. Epub 2005 Jun 20.
6
Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients.
Nano Lett. 2010 Sep 8;10(9):3379-85. doi: 10.1021/nl101204e.
7
Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio.
J Bacteriol. 2010 Apr;192(7):1796-800. doi: 10.1128/JB.01507-09. Epub 2010 Jan 29.
8
A simple three-dimensional microfluidic platform for studying chemotaxis and cell sorting.
Lab Chip. 2025 Jan 28;25(3):343-353. doi: 10.1039/d4lc00892h.
9
Visualizing Chemoattraction of Planktonic Cells to a Biofilm.
Methods Mol Biol. 2018;1729:61-69. doi: 10.1007/978-1-4939-7577-8_6.

本文引用的文献

1
Chemotaxis shapes the microscale organization of the ocean's microbiome.
Nature. 2022 May;605(7908):132-138. doi: 10.1038/s41586-022-04614-3. Epub 2022 Apr 20.
2
More than propellers: how flagella shape bacterial motility behaviors.
Curr Opin Microbiol. 2021 Jun;61:73-81. doi: 10.1016/j.mib.2021.02.005. Epub 2021 Apr 9.
3
Microrheology reveals microscale viscosity gradients in planktonic systems.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2011389118.
4
Motile curved bacteria are Pareto-optimal.
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14440-14447. doi: 10.1073/pnas.1818997116. Epub 2019 Jul 2.
5
Cell Size: Fat Makes Cells Fat.
Curr Biol. 2017 Jun 19;27(12):R592-R594. doi: 10.1016/j.cub.2017.05.017.
6
Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships.
Nat Microbiol. 2017 May 30;2:17065. doi: 10.1038/nmicrobiol.2017.65.
7
Cell morphology governs directional control in swimming bacteria.
Sci Rep. 2017 May 17;7(1):2061. doi: 10.1038/s41598-017-01565-y.
8
Speed-dependent chemotactic precision in marine bacteria.
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8624-9. doi: 10.1073/pnas.1602307113. Epub 2016 Jul 20.
9
Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1576-81. doi: 10.1073/pnas.1512307113. Epub 2016 Jan 22.
10
Growth rate and cell size: a re-examination of the growth law.
Curr Opin Microbiol. 2015 Apr;24:96-103. doi: 10.1016/j.mib.2015.01.011. Epub 2015 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验