Suppr超能文献

木质纤维素生物质的生物转化:生物化学与分子视角

Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives.

作者信息

Kumar Raj, Singh Sompal, Singh Om V

机构信息

Radiation Biotechnology Unit, Division of Radiation Biology and Radiation Protection, Institute of Nuclear Medicine and Allied Sciences, New Delhi, 110054, India.

Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

出版信息

J Ind Microbiol Biotechnol. 2008 May;35(5):377-391. doi: 10.1007/s10295-008-0327-8. Epub 2008 Mar 13.

Abstract

In view of rising prices of crude oil due to increasing fuel demands, the need for alternative sources of bioenergy is expected to increase sharply in the coming years. Among potential alternative bioenergy resources, lignocellulosics have been identified as the prime source of biofuels and other value-added products. Lignocelluloses as agricultural, industrial and forest residuals account for the majority of the total biomass present in the world. To initiate the production of industrially important products from cellulosic biomass, bioconversion of the cellulosic components into fermentable sugars is necessary. A variety of microorganisms including bacteria and fungi may have the ability to degrade the cellulosic biomass to glucose monomers. Bacterial cellulases exist as discrete multi-enzyme complexes, called cellulosomes that consist of multiple subunits. Cellulolytic enzyme systems from the filamentous fungi, especially Trichoderma reesei, contain two exoglucanases or cellobiohydrolases (CBH1 and CBH2), at least four endoglucanases (EG1, EG2, EG3, EG5), and one beta-glucosidase. These enzymes act synergistically to catalyse the hydrolysis of cellulose. Different physical parameters such as pH, temperature, adsorption, chemical factors like nitrogen, phosphorus, presence of phenolic compounds and other inhibitors can critically influence the bioconversion of lignocellulose. The production of cellulases by microbial cells is governed by genetic and biochemical controls including induction, catabolite repression, or end product inhibition. Several efforts have been made to increase the production of cellulases through strain improvement by mutagenesis. Various physical and chemical methods have been used to develop bacterial and fungal strains producing higher amounts of cellulase, all with limited success. Cellulosic bioconversion is a complex process and requires the synergistic action of the three enzymatic components consisting of endoglucanases, exoglucanases and beta-glucosidases. The co-cultivation of microbes in fermentation can increase the quantity of the desirable components of the cellulase complex. An understanding of the molecular mechanism leading to biodegradation of lignocelluloses and the development of the bioprocessing potential of cellulolytic microorganisms might effectively be accomplished with recombinant DNA technology. For instance, cloning and sequencing of the various cellulolytic genes could economize the cellulase production process. Apart from that, metabolic engineering and genomics approaches have great potential for enhancing our understanding of the molecular mechanism of bioconversion of lignocelluloses to value added economically significant products in the future.

摘要

鉴于燃料需求增加导致原油价格上涨,预计未来几年对替代生物能源的需求将急剧增加。在潜在的替代生物能源资源中,木质纤维素已被确定为生物燃料和其他增值产品的主要来源。作为农业、工业和森林残留物的木质纤维素占世界总生物质的大部分。为了从纤维素生物质中生产具有工业重要性的产品,将纤维素成分生物转化为可发酵糖是必要的。包括细菌和真菌在内的多种微生物可能具有将纤维素生物质降解为葡萄糖单体的能力。细菌纤维素酶以离散的多酶复合物形式存在,称为纤维小体,由多个亚基组成。丝状真菌,特别是里氏木霉的纤维素分解酶系统包含两种外切葡聚糖酶或纤维二糖水解酶(CBH1和CBH2)、至少四种内切葡聚糖酶(EG1、EG2、EG3、EG5)和一种β-葡萄糖苷酶。这些酶协同作用以催化纤维素的水解。不同的物理参数,如pH值、温度、吸附,以及化学因素,如氮、磷、酚类化合物的存在和其他抑制剂,都可能严重影响木质纤维素的生物转化。微生物细胞产生纤维素酶受遗传和生化控制,包括诱导、分解代谢物阻遏或终产物抑制。人们已经做出了一些努力,通过诱变改善菌株来提高纤维素酶的产量。已经使用了各种物理和化学方法来开发产生更多纤维素酶的细菌和真菌菌株,但都取得了有限的成功。纤维素生物转化是一个复杂的过程,需要内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶这三种酶成分的协同作用。在发酵中共同培养微生物可以增加纤维素酶复合物中所需成分的数量。利用重组DNA技术可以有效地了解导致木质纤维素生物降解的分子机制,并开发纤维素分解微生物的生物加工潜力。例如,克隆和测序各种纤维素分解基因可以节省纤维素酶的生产过程。除此之外,代谢工程和基因组学方法在未来有很大潜力增强我们对木质纤维素生物转化为具有经济价值的重要产品的分子机制的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验