Weinberger Hans F, Kawasaki Kohkichi, Shigesada Nanako
School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, MN 55455, USA.
J Math Biol. 2008 Sep;57(3):387-411. doi: 10.1007/s00285-008-0168-0. Epub 2008 Mar 21.
An idea used by Thieme (J. Math. Biol. 8, 173-187, 1979) is extended to show that a class of integro-difference models for a periodically varying habitat has a spreading speed and a formula for it, even when the recruitment function R(u, x) is not nondecreasing in u, so that overcompensation occurs. Numerical simulations illustrate the behavior of solutions of the recursion whose initial values vanish outside a bounded set.
蒂梅(《数学生物学杂志》8卷,第173 - 187页,1979年)提出的一个想法被推广,以表明一类用于周期性变化栖息地的积分 - 差分模型具有传播速度及其公式,即使补充函数(R(u, x))在(u)中并非非递减,从而出现过补偿情况。数值模拟展示了初始值在有界集外消失的递归解的行为。