Musgrave Jeffrey, Lutscher Frithjof
Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada,
J Math Biol. 2014 Sep;69(3):617-58. doi: 10.1007/s00285-013-0715-1. Epub 2013 Aug 3.
We analyze integrodifference equations (IDEs) in patchy landscapes. Movement is described by a dispersal kernel that arises from a random walk model with patch dependent diffusion, settling, and mortality rates, and it incorporates individual behavior at an interface between two patch types. Growth follows a simple Beverton-Holt growth or linear decay. We obtain explicit formulae for the critical domain-size problem, and we illustrate how different individual behavior at the boundary between two patch types affects this quantity. We also study persistence conditions on an infinite, periodic, patchy landscape. We observe that if the population can persist on the landscape, the spatial profile of the invasion evolves into a discontinuous traveling periodic wave that moves with constant speed. Assuming linear determinacy, we calculate the dispersion relation and illustrate how movement behavior affects invasion speed. Numerical simulations justify our approach by showing a close correspondence between the spread rate obtained from the dispersion relation and from numerical simulations.
我们分析斑块状景观中的积分差分方程(IDE)。运动由一个扩散核描述,该扩散核源于具有斑块依赖扩散、定居和死亡率的随机游走模型,并纳入了两种斑块类型之间界面处的个体行为。增长遵循简单的贝弗顿 - 霍尔特增长或线性衰减。我们得到了临界域大小问题的显式公式,并说明了两种斑块类型之间边界处不同的个体行为如何影响这个量。我们还研究了无限、周期性斑块状景观上的持久性条件。我们观察到,如果种群能够在景观上持续存在,入侵的空间分布会演变成以恒定速度移动的不连续行波周期波。假设线性确定性,我们计算色散关系,并说明运动行为如何影响入侵速度。数值模拟通过显示从色散关系获得的传播速率与数值模拟获得的传播速率之间的密切对应关系,证明了我们的方法是合理的。