Suppr超能文献

Ranking the selectivity of PubChem screening hits by activity-based protein profiling: MMP13 as a case study.

作者信息

Nakai Ryuichiro, Salisbury Cleo M, Rosen Hugh, Cravatt Benjamin F

机构信息

Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Bioorg Med Chem. 2009 Feb 1;17(3):1101-8. doi: 10.1016/j.bmc.2008.03.018. Epub 2008 Mar 8.

Abstract

High-throughput screening (HTS) has become an integral part of academic and industrial efforts aimed at developing new chemical probes and drugs. These screens typically generate several 'hits', or lead active compounds, that must be prioritized for follow-up medicinal chemistry studies. Among primary considerations for ranking lead compounds is selectivity for the intended target, especially among mechanistically related proteins. Here, we show how the chemical proteomic technology activity-based protein profiling (ABPP) can serve as a universal assay to rank HTS hits based on their selectivity across many members of an enzyme superfamily. As a case study, four metalloproteinase-13 (MMP13) inhibitors of similar potency originating from a publically supported HTS and reported in PubChem were tested by ABPP for selectivity against a panel of 27 diverse metalloproteases. The inhibitors could be readily separated into two groups: (1) those that were active against several metalloproteases and (2) those that showed high selectivity for MMP13. The latter set of inhibitors was thereby designated as more suitable for future medicinal chemistry optimization. We anticipate that ABPP will find general utility as a platform to rank the selectivity of lead compounds emerging from HTS assays for a wide variety of enzymes.

摘要

相似文献

1
Ranking the selectivity of PubChem screening hits by activity-based protein profiling: MMP13 as a case study.
Bioorg Med Chem. 2009 Feb 1;17(3):1101-8. doi: 10.1016/j.bmc.2008.03.018. Epub 2008 Mar 8.
2
Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries.
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11473-8. doi: 10.1073/pnas.0604348103. Epub 2006 Jul 24.
3
Mass spectrometric techniques for label-free high-throughput screening in drug discovery.
Anal Chem. 2007 Nov 1;79(21):8207-13. doi: 10.1021/ac062421q. Epub 2007 Sep 29.
4
High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate.
Bioorg Med Chem. 2009 Feb 1;17(3):990-1005. doi: 10.1016/j.bmc.2008.03.004. Epub 2008 Mar 6.
5
High throughput screens yield small molecule inhibitors of Leishmania CRK3:CYC6 cyclin-dependent kinase.
PLoS Negl Trop Dis. 2011 Apr 5;5(4):e1033. doi: 10.1371/journal.pntd.0001033.
6
Extraction of structure-activity relationship information from high-throughput screening data.
Curr Med Chem. 2009;16(31):4049-57. doi: 10.2174/092986709789378189.
7
Fragment-Based Discovery of 5-Arylisatin-Based Inhibitors of Matrix Metalloproteinases 2 and 13.
ChemMedChem. 2016 Sep 6;11(17):1892-8. doi: 10.1002/cmdc.201600266. Epub 2016 Jul 15.
8
Technological advances in high-throughput screening.
Am J Pharmacogenomics. 2004;4(4):263-76. doi: 10.2165/00129785-200404040-00006.
9
Virtual High-Throughput Screening for Matrix Metalloproteinase Inhibitors.
Methods Mol Biol. 2017;1579:259-271. doi: 10.1007/978-1-4939-6863-3_14.

引用本文的文献

2
Tofacitinib Inhibits STAT Phosphorylation and Matrix Metalloproteinase-3, -9 and -13 Production by C28/I2 Human Juvenile Chondrocytes.
Open Access Rheumatol. 2022 Oct 4;14:195-209. doi: 10.2147/OARRR.S363736. eCollection 2022.
3
Inhibition of MMPs and ADAM/ADAMTS.
Biochem Pharmacol. 2019 Jul;165:33-40. doi: 10.1016/j.bcp.2019.02.033. Epub 2019 Feb 28.
5
Targeting matrix metalloproteinase activity and expression for the treatment of viral myocarditis.
J Cardiovasc Transl Res. 2014 Mar;7(2):212-25. doi: 10.1007/s12265-013-9528-2. Epub 2014 Jan 1.
6
Substrate-driven mapping of the degradome by comparison of sequence logos.
PLoS Comput Biol. 2013;9(11):e1003353. doi: 10.1371/journal.pcbi.1003353. Epub 2013 Nov 14.
7
New approaches for dissecting protease functions to improve probe development and drug discovery.
Nat Struct Mol Biol. 2012 Jan 5;19(1):9-16. doi: 10.1038/nsmb.2203.
8
A novel method for mining highly imbalanced high-throughput screening data in PubChem.
Bioinformatics. 2009 Dec 15;25(24):3310-6. doi: 10.1093/bioinformatics/btp589. Epub 2009 Oct 13.
9
High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate.
Bioorg Med Chem. 2009 Feb 1;17(3):990-1005. doi: 10.1016/j.bmc.2008.03.004. Epub 2008 Mar 6.

本文引用的文献

1
High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate.
Bioorg Med Chem. 2009 Feb 1;17(3):990-1005. doi: 10.1016/j.bmc.2008.03.004. Epub 2008 Mar 6.
2
A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol.
Chem Biol. 2007 Dec;14(12):1347-56. doi: 10.1016/j.chembiol.2007.11.006.
3
Profiling Protein Arginine Deiminase 4 (PAD4): a novel screen to identify PAD4 inhibitors.
Bioorg Med Chem. 2008 Jan 15;16(2):739-45. doi: 10.1016/j.bmc.2007.10.021. Epub 2007 Oct 13.
4
High-throughput screening assays for the identification of chemical probes.
Nat Chem Biol. 2007 Aug;3(8):466-79. doi: 10.1038/nchembio.2007.17.
5
A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases.
J Am Chem Soc. 2007 Aug 8;129(31):9594-5. doi: 10.1021/ja073650c. Epub 2007 Jul 13.
6
Activity-based probes for proteomic profiling of histone deacetylase complexes.
Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1171-6. doi: 10.1073/pnas.0608659104. Epub 2007 Jan 16.
7
Functional interrogation of the kinome using nucleotide acyl phosphates.
Biochemistry. 2007 Jan 16;46(2):350-8. doi: 10.1021/bi062142x.
8
An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling.
Chem Biol. 2006 Oct;13(10):1041-50. doi: 10.1016/j.chembiol.2006.08.008.
9
Mechanism-based profiling of enzyme families.
Chem Rev. 2006 Aug;106(8):3279-301. doi: 10.1021/cr050288g.
10
Proteomic profiling of metalloprotease activities with cocktails of active-site probes.
Nat Chem Biol. 2006 May;2(5):274-81. doi: 10.1038/nchembio781. Epub 2006 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验