Suppr超能文献

滑动间皮组织下方润滑液层的流体动力学增厚

Hydrodynamic thickening of lubricating fluid layer beneath sliding mesothelial tissues.

作者信息

Lin Judy L, Moghani Taraneh, Fabry Ben, Butler James P, Loring Stephen H

机构信息

Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.

出版信息

J Biomech. 2008;41(6):1197-205. doi: 10.1016/j.jbiomech.2008.01.028. Epub 2008 Mar 25.

Abstract

The delicate mesothelial surfaces of the pleural space and other serosal cavities slide relative to each, lubricated by pleural fluid. In the absence of breathing motion, differences between lung and chest wall shape could eventually cause the lungs and chest wall to come into contact. Whether sliding motion keeps lungs and chest wall separated by a continuous liquid layer is not known. To explore the effects of hydrodynamic pressures generated by mesothelial sliding, we measured the thickness of the liquid layer beneath the peritoneal surface of a 3-cm disk of rat abdominal wall under a normal stress of 2 cm H2O sliding against a glass plate rotating at 0-1 rev/s. Thickness of the lubricating layer was determined microscopically from the appearance of fluorescent microspheres adherent to the tissue and glass. Usually, fluid thickness near the center of the tissue disk increased with the onset of glass rotation, increasing to 50-200 microm at higher rotation rates, suggesting hydrodynamic pumping. However, thickness changes often differed substantially among tissue samples and between clockwise and counter-clockwise rotation, and sometimes thickness decreased with rotation, suggesting that topographic features of the tissue are important in determining global hydrodynamic effects. We conclude that mesothelial sliding induces local hydrodynamic pressure gradients and global hydrodynamic pumping that typically increases the thickness of the lubricating fluid layer, moving fluid against the global pressure gradient. A similar phenomenon could maintain fluid continuity in the pleural space, reducing frictional force and shear stress during breathing.

摘要

胸膜腔和其他浆膜腔的间皮表面很薄,在胸膜液的润滑下相互滑动。在没有呼吸运动的情况下,肺和胸壁形状的差异最终可能导致肺和胸壁接触。尚不清楚滑动运动是否能使肺和胸壁被一层连续的液体层隔开。为了探究间皮滑动产生的流体动力压力的影响,我们在2 cm H2O的正常压力下,测量了大鼠腹壁3 cm圆盘腹膜表面下方液体层的厚度,该圆盘与以0 - 1转/秒旋转的玻璃板相对滑动。通过附着在组织和玻璃上荧光微球的外观,用显微镜确定润滑层的厚度。通常,组织圆盘中心附近的液体厚度随着玻璃旋转开始而增加,在较高旋转速率下增加到50 - 200微米,表明存在流体动力泵吸作用。然而,不同组织样本之间以及顺时针和逆时针旋转之间的厚度变化往往有很大差异,有时厚度会随着旋转而减小,这表明组织的地形特征在决定整体流体动力效应方面很重要。我们得出结论,间皮滑动会引起局部流体动力压力梯度和整体流体动力泵吸作用,通常会增加润滑液层的厚度,使液体逆着整体压力梯度流动。类似的现象可能维持胸膜腔内的液体连续性,减少呼吸过程中的摩擦力和剪切应力。

相似文献

2
Lubrication regimes in mesothelial sliding.间皮滑动中的润滑机制
J Biomech. 2005 Dec;38(12):2390-6. doi: 10.1016/j.jbiomech.2004.10.012. Epub 2004 Dec 13.
3
Influence of the softness of the parietal pleura on respiratory sliding mechanisms.壁胸膜柔软度对呼吸滑动机制的影响。
Respir Physiol Neurobiol. 2011 Jul 31;177(2):114-9. doi: 10.1016/j.resp.2011.03.030. Epub 2011 Apr 5.
4
Probing softness of the parietal pleural surface at the micron scale.探测微尺度下壁胸膜表面的柔软度。
J Biomech. 2011 Sep 23;44(14):2558-64. doi: 10.1016/j.jbiomech.2011.07.008. Epub 2011 Aug 5.
7
Model for a pump that drives circulation of pleural fluid.驱动胸腔积液循环的泵模型。
J Appl Physiol (1985). 1995 Jan;78(1):23-9. doi: 10.1152/jappl.1995.78.1.23.
8
Elastohydrodynamic separation of pleural surfaces during breathing.呼吸过程中胸膜表面的弹性流体动力分离。
Respir Physiol Neurobiol. 2003 Aug 14;137(1):97-106. doi: 10.1016/s1569-9048(03)00138-1.
9
Fluid exchanges across the parietal peritoneal and pleural mesothelia.
J Appl Physiol (1985). 1993 Apr;74(4):1779-84. doi: 10.1152/jappl.1993.74.4.1779.

引用本文的文献

1
Probing softness of the parietal pleural surface at the micron scale.探测微尺度下壁胸膜表面的柔软度。
J Biomech. 2011 Sep 23;44(14):2558-64. doi: 10.1016/j.jbiomech.2011.07.008. Epub 2011 Aug 5.
2
Influence of the softness of the parietal pleura on respiratory sliding mechanisms.壁胸膜柔软度对呼吸滑动机制的影响。
Respir Physiol Neurobiol. 2011 Jul 31;177(2):114-9. doi: 10.1016/j.resp.2011.03.030. Epub 2011 Apr 5.

本文引用的文献

3
Lubrication regimes in mesothelial sliding.间皮滑动中的润滑机制
J Biomech. 2005 Dec;38(12):2390-6. doi: 10.1016/j.jbiomech.2004.10.012. Epub 2004 Dec 13.
4
Friction and lubrication of pleural tissues.胸膜组织的摩擦与润滑
Respir Physiol Neurobiol. 2004 Aug 20;142(1):55-68. doi: 10.1016/j.resp.2004.05.006.
5
Pleural mechanics and fluid exchange.胸膜力学与液体交换
Physiol Rev. 2004 Apr;84(2):385-410. doi: 10.1152/physrev.00026.2003.
6
Elastohydrodynamic separation of pleural surfaces during breathing.呼吸过程中胸膜表面的弹性流体动力分离。
Respir Physiol Neurobiol. 2003 Aug 14;137(1):97-106. doi: 10.1016/s1569-9048(03)00138-1.
8
Effect of ventilation frequency and tidal volume on pleural space thickness in rabbits.
J Appl Physiol (1985). 1993 Oct;75(4):1836-41. doi: 10.1152/jappl.1993.75.4.1836.
9
Model for a pump that drives circulation of pleural fluid.驱动胸腔积液循环的泵模型。
J Appl Physiol (1985). 1995 Jan;78(1):23-9. doi: 10.1152/jappl.1995.78.1.23.
10
Contents of the pleural space.胸膜腔的内容物。
J Appl Physiol. 1971 Feb;30(2):208-13. doi: 10.1152/jappl.1971.30.2.208.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验