Suppr超能文献

模型遗传回路中的多功能性与稳健性权衡

Multifunctionality and robustness trade-offs in model genetic circuits.

作者信息

Martin Olivier C, Wagner Andreas

机构信息

Univ Paris-Sud, UMR8120, Laboratoire de Genetique Vegetale du Moulon, INRA, and CNRS, Gif-sur-Yvette, F-91190, France.

出版信息

Biophys J. 2008 Apr 15;94(8):2927-37. doi: 10.1529/biophysj.107.114348.

Abstract

Most cellular systems, from macromolecules to genetic networks, have more than one function. Examples involving networks include the transcriptional regulation circuits formed by Hox genes and the Drosophila segmentation genes, which function in both early and later developmental events. Does the need to carry out more than one function severely constrain network architecture? Does it imply robustness trade-offs among functions? That is, if one function is highly robust to mutations, are other functions highly sensitive, and vice versa? Little available evidence speaks to these questions. We address them with a general model of transcriptional regulation networks. We show that requiring a regulatory network to carry out additional functions constrains the number of permissible network architectures exponentially. However, robustness of one function to regulatory mutations is uncorrelated or weakly positively correlated to robustness of other functions. This means that robustness trade-offs generally do not arise in the systems we study. As long as there are many alternative network structures, each of which can fulfill all required functions, multiple functions may acquire high robustness through gradual Darwinian evolution.

摘要

大多数细胞系统,从大分子到基因网络,都具有不止一种功能。涉及网络的例子包括由Hox基因和果蝇体节基因形成的转录调控回路,它们在早期和后期发育事件中都发挥作用。执行多种功能的需求是否会严重限制网络架构?这是否意味着功能之间存在稳健性权衡?也就是说,如果一种功能对突变具有高度稳健性,其他功能是否高度敏感,反之亦然?现有的证据很少涉及这些问题。我们用一个转录调控网络的通用模型来解决这些问题。我们表明,要求调控网络执行额外的功能会以指数方式限制允许的网络架构数量。然而,一种功能对调控突变的稳健性与其他功能的稳健性不相关或呈弱正相关。这意味着在我们研究的系统中,稳健性权衡通常不会出现。只要有许多替代网络结构,其中每一种都能满足所有所需功能,多种功能就可以通过渐进的达尔文进化获得高稳健性。

相似文献

1
Multifunctionality and robustness trade-offs in model genetic circuits.
Biophys J. 2008 Apr 15;94(8):2927-37. doi: 10.1529/biophysj.107.114348.
2
Robustness can evolve gradually in complex regulatory gene networks with varying topology.
PLoS Comput Biol. 2007 Feb 2;3(2):e15. doi: 10.1371/journal.pcbi.0030015.
3
Inferring quantitative models of regulatory networks from expression data.
Bioinformatics. 2004 Aug 4;20 Suppl 1:i248-56. doi: 10.1093/bioinformatics/bth941.
4
Association between pathways in regulatory networks.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2036-40. doi: 10.1109/IEMBS.2006.260730.
5
Predicting genetic regulatory response using classification.
Bioinformatics. 2004 Aug 4;20 Suppl 1:i232-40. doi: 10.1093/bioinformatics/bth923.
6
A causal inference approach for constructing transcriptional regulatory networks.
Bioinformatics. 2005 Nov 1;21(21):4007-13. doi: 10.1093/bioinformatics/bti648. Epub 2005 Aug 30.
7
Self-consistent proteomic field theory of stochastic gene switches.
Biophys J. 2005 Feb;88(2):828-50. doi: 10.1529/biophysj.104.050666. Epub 2004 Nov 12.
8
Geometry-induced bursting dynamics in gene expression.
Biophys J. 2012 May 2;102(9):2186-91. doi: 10.1016/j.bpj.2012.03.060.
9
Inference of transcriptional regulatory network by two-stage constrained space factor analysis.
Bioinformatics. 2005 Nov 1;21(21):4033-8. doi: 10.1093/bioinformatics/bti656. Epub 2005 Sep 6.
10
Dynamical Robustness against Multiple Mutations in Signaling Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2016 Sep-Oct;13(5):996-1002. doi: 10.1109/TCBB.2015.2495251. Epub 2015 Oct 27.

引用本文的文献

1
Morphogens in the evolution of size, shape and patterning.
Development. 2024 Sep 15;151(18). doi: 10.1242/dev.202412. Epub 2024 Sep 18.
2
4
Power provides protection: Genetic robustness in yeast depends on the capacity to generate energy.
PLoS Genet. 2017 May 11;13(5):e1006768. doi: 10.1371/journal.pgen.1006768. eCollection 2017 May.
5
A spectrum of modularity in multi-functional gene circuits.
Mol Syst Biol. 2017 Apr 27;13(4):925. doi: 10.15252/msb.20167347.
6
Function does not follow form in gene regulatory circuits.
Sci Rep. 2015 Aug 20;5:13015. doi: 10.1038/srep13015.
7
Analysis of gene network robustness based on saturated fixed point attractors.
EURASIP J Bioinform Syst Biol. 2014 Mar 20;2014(1):4. doi: 10.1186/1687-4153-2014-4.
8
A latent capacity for evolutionary innovation through exaptation in metabolic systems.
Nature. 2013 Aug 8;500(7461):203-6. doi: 10.1038/nature12301. Epub 2013 Jul 14.
9
Constraint and contingency in multifunctional gene regulatory circuits.
PLoS Comput Biol. 2013;9(6):e1003071. doi: 10.1371/journal.pcbi.1003071. Epub 2013 Jun 6.
10
In silico evolution of gene cooption in pattern-forming gene networks.
ScientificWorldJournal. 2012;2012:560101. doi: 10.1100/2012/560101. Epub 2012 Dec 25.

本文引用的文献

1
DOES EVOLUTIONARY PLASTICITY EVOLVE?
Evolution. 1996 Jun;50(3):1008-1023. doi: 10.1111/j.1558-5646.1996.tb02342.x.
2
Robustness can evolve gradually in complex regulatory gene networks with varying topology.
PLoS Comput Biol. 2007 Feb 2;3(2):e15. doi: 10.1371/journal.pcbi.0030015.
3
Robustness and modular design of the Drosophila segment polarity network.
Mol Syst Biol. 2006;2:70. doi: 10.1038/msb4100111. Epub 2006 Dec 12.
5
Circuit topology and the evolution of robustness in two-gene circadian oscillators.
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11775-80. doi: 10.1073/pnas.0501094102. Epub 2005 Aug 8.
6
Metabolic syndrome and robustness tradeoffs.
Diabetes. 2004 Dec;53 Suppl 3:S6-S15. doi: 10.2337/diabetes.53.suppl_3.s6.
8
Robustness properties of circadian clock architectures.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13210-5. doi: 10.1073/pnas.0401463101. Epub 2004 Aug 30.
9
Dynamic control of positional information in the early Drosophila embryo.
Nature. 2004 Jul 15;430(6997):368-71. doi: 10.1038/nature02678.
10
Topology and robustness in the Drosophila segment polarity network.
PLoS Biol. 2004 Jun;2(6):e123. doi: 10.1371/journal.pbio.0020123. Epub 2004 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验