Suppr超能文献

多功能基因回路中的模块化谱系。

A spectrum of modularity in multi-functional gene circuits.

作者信息

Jiménez Alba, Cotterell James, Munteanu Andreea, Sharpe James

机构信息

EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.

Universitat Pompeu Fabra (UPF), Barcelona, Spain.

出版信息

Mol Syst Biol. 2017 Apr 27;13(4):925. doi: 10.15252/msb.20167347.

Abstract

A major challenge in systems biology is to understand the relationship between a circuit's structure and its function, but how is this relationship affected if the circuit must perform multiple distinct functions within the same organism? In particular, to what extent do multi-functional circuits contain modules which reflect the different functions? Here, we computationally survey a range of bi-functional circuits which show no simple structural modularity: They can switch between two qualitatively distinct functions, while both functions depend on all genes of the circuit. Our analysis reveals two distinct classes: circuits which overlay two simpler mono-functional sub-circuits within their circuitry, and circuits, which do not. In this second class, the bi-functionality emerges from more complex designs which are not fully decomposable into distinct modules and are consequently less intuitive to predict or understand. These non-intuitive emergent circuits are just as robust as their hybrid counterparts, and we therefore suggest that the common bias toward studying modular systems may hinder our understanding of real biological circuits.

摘要

系统生物学中的一个主要挑战是理解一个回路的结构与其功能之间的关系,但是如果该回路必须在同一生物体中执行多种不同功能,这种关系会受到怎样的影响呢?特别是,多功能回路在多大程度上包含反映不同功能的模块?在这里,我们通过计算研究了一系列没有简单结构模块化的双功能回路:它们可以在两种性质不同的功能之间切换,而两种功能都依赖于回路的所有基因。我们的分析揭示了两种不同的类型:一类是在其电路中叠加了两个更简单的单功能子回路的回路,另一类则不是。在第二类中,双功能性源于更复杂的设计,这些设计不能完全分解为不同的模块,因此预测或理解起来不太直观。这些非直观的涌现回路与它们的混合对应物一样稳健,因此我们认为,对模块化系统研究的普遍偏见可能会阻碍我们对真实生物回路的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e728/5408781/3f8d6179e08e/MSB-13-925-g002.jpg

相似文献

1
A spectrum of modularity in multi-functional gene circuits.
Mol Syst Biol. 2017 Apr 27;13(4):925. doi: 10.15252/msb.20167347.
2
Automatic design of digital synthetic gene circuits.
PLoS Comput Biol. 2011 Feb;7(2):e1001083. doi: 10.1371/journal.pcbi.1001083. Epub 2011 Feb 17.
3
Systems approaches in understanding evolution and evolvability.
Prog Biophys Mol Biol. 2013 Dec;113(3):369-74. doi: 10.1016/j.pbiomolbio.2013.09.004. Epub 2013 Oct 9.
4
A Practical Step-by-Step Guide for Quantifying Retroactivity in Gene Networks.
Methods Mol Biol. 2021;2229:293-311. doi: 10.1007/978-1-0716-1032-9_14.
5
An Automated Biomodel Selection System (BMSS) for Gene Circuit Designs.
ACS Synth Biol. 2019 Jul 19;8(7):1484-1497. doi: 10.1021/acssynbio.8b00523. Epub 2019 May 7.
6
In silico feedback for in vivo regulation of a gene expression circuit.
Nat Biotechnol. 2011 Nov 6;29(12):1114-6. doi: 10.1038/nbt.2018.
7
Constraint and contingency in multifunctional gene regulatory circuits.
PLoS Comput Biol. 2013;9(6):e1003071. doi: 10.1371/journal.pcbi.1003071. Epub 2013 Jun 6.
8
Dynamical roles of biological regulatory circuits.
Brief Bioinform. 2007 Jul;8(4):220-5. doi: 10.1093/bib/bbm028. Epub 2007 Jul 11.
9
What Makes a Functional Gene Regulatory Network? A Circuit Motif Analysis.
J Phys Chem B. 2022 Dec 15;126(49):10374-10383. doi: 10.1021/acs.jpcb.2c05412. Epub 2022 Dec 5.
10
Latent phenotypes pervade gene regulatory circuits.
BMC Syst Biol. 2014 May 30;8:64. doi: 10.1186/1752-0509-8-64.

引用本文的文献

1
Recurrent hyper-motif circuits in developmental programs.
bioRxiv. 2024 Nov 20:2024.11.20.624466. doi: 10.1101/2024.11.20.624466.
2
Understanding developmental system drift.
Development. 2024 Oct 15;151(20). doi: 10.1242/dev.203054. Epub 2024 Oct 17.
3
Dynamics of morphogen source formation in a growing tissue.
PLoS Comput Biol. 2024 Oct 14;20(10):e1012508. doi: 10.1371/journal.pcbi.1012508. eCollection 2024 Oct.
4
Dissecting reversible and irreversible single cell state transitions from gene regulatory networks.
bioRxiv. 2024 Sep 1:2024.08.30.610498. doi: 10.1101/2024.08.30.610498.
6
A mathematical framework for understanding the spontaneous emergence of complexity applicable to growing multicellular systems.
PLoS Comput Biol. 2024 Jun 5;20(6):e1011882. doi: 10.1371/journal.pcbi.1011882. eCollection 2024 Jun.
7
A dynamical perspective: moving towards mechanism in single-cell transcriptomics.
Philos Trans R Soc Lond B Biol Sci. 2024 Apr 22;379(1900):20230049. doi: 10.1098/rstb.2023.0049. Epub 2024 Mar 4.
9
Modularity of biological systems: a link between structure and function.
J R Soc Interface. 2023 Oct;20(207):20230505. doi: 10.1098/rsif.2023.0505. Epub 2023 Oct 25.
10
Modularity of biological systems: a link between structure and function.
bioRxiv. 2023 Sep 12:2023.09.11.557227. doi: 10.1101/2023.09.11.557227.

本文引用的文献

1
PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY.
Evolution. 1996 Jun;50(3):967-976. doi: 10.1111/j.1558-5646.1996.tb02339.x.
2
Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression.
PLoS Comput Biol. 2017 Feb 3;13(2):e1005285. doi: 10.1371/journal.pcbi.1005285. eCollection 2017 Feb.
4
A Local, Self-Organizing Reaction-Diffusion Model Can Explain Somite Patterning in Embryos.
Cell Syst. 2015 Oct 28;1(4):257-69. doi: 10.1016/j.cels.2015.10.002.
5
Mechanisms of vertebrate embryo segmentation: Common themes in trunk and limb development.
Semin Cell Dev Biol. 2016 Jan;49:125-34. doi: 10.1016/j.semcdb.2016.01.010. Epub 2016 Jan 19.
6
Function does not follow form in gene regulatory circuits.
Sci Rep. 2015 Aug 20;5:13015. doi: 10.1038/srep13015.
7
Intersecting transcription networks constrain gene regulatory evolution.
Nature. 2015 Jul 16;523(7560):361-5. doi: 10.1038/nature14613. Epub 2015 Jul 8.
8
Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
PLoS Comput Biol. 2015 Apr 2;11(4):e1004128. doi: 10.1371/journal.pcbi.1004128. eCollection 2015 Apr.
9
Pattern selection by dynamical biochemical signals.
Biophys J. 2015 Mar 24;108(6):1555-1565. doi: 10.1016/j.bpj.2014.12.058.
10
Synthetic lateral inhibition governs cell-type bifurcation with robust ratios.
Nat Commun. 2015 Feb 5;6:6195. doi: 10.1038/ncomms7195.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验