Suppr超能文献

图论能告诉我们关于词汇学习和词汇检索的哪些信息?

What can graph theory tell us about word learning and lexical retrieval?

作者信息

Vitevitch Michael S

机构信息

Spoken Language Laboratory, Department of Psychology, University of Kansas, Lawrence, KS 66045, USA.

出版信息

J Speech Lang Hear Res. 2008 Apr;51(2):408-22. doi: 10.1044/1092-4388(2008/030).

Abstract

PURPOSE

Graph theory and the new science of networks provide a mathematically rigorous approach to examine the development and organization of complex systems. These tools were applied to the mental lexicon to examine the organization of words in the lexicon and to explore how that structure might influence the acquisition and retrieval of phonological word-forms.

METHOD

Pajek, a program for large network analysis and visualization (V. Batagelj & A. Mvrar, 1998), was used to examine several characteristics of a network derived from a computerized database of the adult lexicon. Nodes in the network represented words, and a link connected two nodes if the words were phonological neighbors.

RESULTS

The average path length and clustering coefficient suggest that the phonological network exhibits small-world characteristics. The degree distribution was fit better by an exponential rather than a power-law function. Finally, the network exhibited assortative mixing by degree. Some of these structural characteristics were also found in graphs that were formed by 2 simple stochastic processes suggesting that similar processes might influence the development of the lexicon.

CONCLUSIONS

The graph theoretic perspective may provide novel insights about the mental lexicon and lead to future studies that help us better understand language development and processing.

摘要

目的

图论和新的网络科学提供了一种数学上严谨的方法来研究复杂系统的发展和组织。这些工具被应用于心理词典,以研究词典中单词的组织方式,并探索这种结构如何影响语音词形的习得和检索。

方法

使用Pajek(一个用于大型网络分析和可视化的程序,V. Batagelj和A. Mvrar,1998年)来研究从成人词汇计算机数据库派生的网络的几个特征。网络中的节点代表单词,如果两个单词是语音邻接词,则用一条链接将它们连接起来。

结果

平均路径长度和聚类系数表明语音网络具有小世界特征。度分布用指数函数比用幂律函数拟合得更好。最后,网络按度表现出同类混合。在由两个简单随机过程形成的图中也发现了其中一些结构特征,这表明类似的过程可能影响词典的发展。

结论

图论视角可能为心理词典提供新的见解,并引发未来的研究,帮助我们更好地理解语言发展和处理。

相似文献

6
Insights into failed lexical retrieval from network science.从网络科学角度洞察词汇检索失败。
Cogn Psychol. 2014 Feb;68:1-32. doi: 10.1016/j.cogpsych.2013.10.002. Epub 2013 Nov 20.
7
Modelling the bilingual lexicon as a multiplex phonological network.将双语词汇表建模为多重语音网络。
Can J Exp Psychol. 2025 Mar;79(1):41-60. doi: 10.1037/cep0000351. Epub 2024 Oct 21.
8
Phonological neighborhood measures and multisyllabic word acquisition in children.儿童的语音邻域测量与多音节词习得
J Child Lang. 2022 Jan;49(1):197-212. doi: 10.1017/S0305000920000811. Epub 2021 Mar 24.
9
Using network science in the language sciences and clinic.将网络科学应用于语言科学与临床领域。
Int J Speech Lang Pathol. 2015 Feb;17(1):13-25. doi: 10.3109/17549507.2014.987819. Epub 2014 Dec 24.
10
Phonological networks and systematicity in early lexical acquisition.早期词汇习得中的语音网络与系统性
J Exp Psychol Learn Mem Cogn. 2025 May;51(5):825-836. doi: 10.1037/xlm0001368. Epub 2024 Jun 24.

引用本文的文献

7
Obsolescence effects in second language phonological networks.第二语言语音网络中的老化效应。
Mem Cognit. 2024 May;52(4):771-792. doi: 10.3758/s13421-023-01500-9. Epub 2023 Dec 4.
9
Identifying the phonological backbone in the mental lexicon.在心理词典中识别语音主干。
PLoS One. 2023 Jun 23;18(6):e0287197. doi: 10.1371/journal.pone.0287197. eCollection 2023.
10
Using Complex Networks in the Hearing Sciences.在听力科学中使用复杂网络
Ear Hear. 2024;45(1):1-9. doi: 10.1097/AUD.0000000000001395. Epub 2023 Jun 15.

本文引用的文献

1
The Lexicon and Phonology: Interactions in Language Acquisition.《词汇学与音系学:语言习得中的相互作用》
Lang Speech Hear Serv Sch. 2002 Jan 1;33(1):24-37. doi: 10.1044/0161-1461(2002/003).
3
A model of lexical diffusion in phonological acquisition.语音习得中词汇扩散的一种模型。
Clin Linguist Phon. 2001;15(1-2):19-22. doi: 10.3109/02699200109167624.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验