Suppr超能文献

通过 Tat 基因回路控制 HIV 潜伏期和转激活的概率。

Probabilistic control of HIV latency and transactivation by the Tat gene circuit.

机构信息

Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545;

Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545.

出版信息

Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):12453-12458. doi: 10.1073/pnas.1811195115. Epub 2018 Nov 19.

Abstract

The reservoir of HIV latently infected cells is the major obstacle for eradication of HIV infection. The "shock-and-kill" strategy proposed earlier aims to reduce the reservoir by activating cells out of latency. While the intracellular HIV Tat gene circuit is known to play important roles in controlling latency and its transactivation in HIV-infected cells, the detailed control mechanisms are not well understood. Here we study the mechanism of probabilistic control of the latent and the transactivated cell phenotypes of HIV-infected cells. We reconstructed the probability landscape, which is the probability distribution of the Tat gene circuit states, by directly computing the exact solution of the underlying chemical master equation. Results show that the Tat circuit exhibits a clear bimodal probability landscape (i.e., there are two distinct probability peaks, one associated with the latent cell phenotype and the other with the transactivated cell phenotype). We explore potential modifications to reactions in the Tat gene circuit for more effective transactivation of latent cells (i.e., the shock-and-kill strategy). Our results suggest that enhancing Tat acetylation can dramatically increase Tat and viral production, while increasing the Tat-transactivation response binding affinity can transactivate latent cells more rapidly than other manipulations. Our results further explored the "block and lock" strategy toward a functional cure for HIV. Overall, our study demonstrates a general approach toward discovery of effective therapeutic strategies and druggable targets by examining control mechanisms of cell phenotype switching via exactly computed probability landscapes of reaction networks.

摘要

HIV 潜伏感染细胞的储库是根除 HIV 感染的主要障碍。早期提出的“震撼和杀伤”策略旨在通过激活潜伏细胞来减少储库。虽然细胞内 HIV Tat 基因回路在控制潜伏和 HIV 感染细胞的转录激活方面起着重要作用,但详细的控制机制尚不清楚。在这里,我们研究了 HIV 感染细胞潜伏和转录激活细胞表型的概率控制的机制。我们通过直接计算底层化学主方程的精确解来重建概率景观,即 Tat 基因回路状态的概率分布。结果表明,Tat 电路表现出明显的双峰概率景观(即存在两个明显的概率峰,一个与潜伏细胞表型相关,另一个与转录激活细胞表型相关)。我们探索了 Tat 基因回路中反应的潜在修饰,以更有效地激活潜伏细胞(即“震撼和杀伤”策略)。我们的结果表明,增强 Tat 乙酰化作用可以显著增加 Tat 和病毒的产生,而增加 Tat 转录激活反应结合亲和力可以比其他操作更快地激活潜伏细胞。我们的结果进一步探讨了 HIV 功能性治愈的“阻断和锁定”策略。总的来说,我们的研究通过检查通过反应网络的精确计算概率景观进行细胞表型转换的控制机制,展示了一种发现有效治疗策略和可用药靶的通用方法。

相似文献

1
Probabilistic control of HIV latency and transactivation by the Tat gene circuit.通过 Tat 基因回路控制 HIV 潜伏期和转激活的概率。
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):12453-12458. doi: 10.1073/pnas.1811195115. Epub 2018 Nov 19.

引用本文的文献

2
Modelling HIV-1 control and remission.模拟HIV-1的控制与缓解
NPJ Syst Biol Appl. 2024 Aug 8;10(1):84. doi: 10.1038/s41540-024-00407-8.

本文引用的文献

1
CD8+ lymphocyte control of SIV infection during antiretroviral therapy.CD8+ 淋巴细胞在抗逆转录病毒治疗期间对 SIV 感染的控制。
PLoS Pathog. 2018 Oct 11;14(10):e1007350. doi: 10.1371/journal.ppat.1007350. eCollection 2018 Oct.
8
ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS.使用多有限缓冲区的精确化学主方程求解
Multiscale Model Simul. 2016;14(2):923-963. doi: 10.1137/15M1034180. Epub 2016 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验