Suppr超能文献

一种用于在质子密度加权磁共振成像中分割脉管系统的几何流。

A geometric flow for segmenting vasculature in proton-density weighted MRI.

作者信息

Descoteaux Maxime, Collins D Louis, Siddiqi Kaleem

机构信息

Odyssée Project Team, INRIA, Sophia-Antipolis, France.

McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Canada.

出版信息

Med Image Anal. 2008 Aug;12(4):497-513. doi: 10.1016/j.media.2008.02.003. Epub 2008 Feb 19.

Abstract

Modern neurosurgery takes advantage of magnetic resonance images (MRI) of a patient's cerebral anatomy and vasculature for planning before surgery and guidance during the procedure. Dual echo acquisitions are often performed that yield proton-density (PD) and T2-weighted images to evaluate edema near a tumor or lesion. In this paper we develop a novel geometric flow for segmenting vasculature in PD images, which can also be applied to the easier cases of MR angiography data or Gadolinium enhanced MRI. Obtaining vasculature from PD data is of clinical interest since the acquisition of such images is widespread, the scanning process is non-invasive, and the availability of vessel segmentation methods could obviate the need for an additional angiographic or contrast-based sequence during preoperative imaging. The key idea is to first apply Frangi's vesselness measure [Frangi, A., Niessen, W., Vincken, K.L., Viergever, M.A., 1998. Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 1496 of Lecture Notes in Computer Science, pp. 130-137] to find putative centerlines of tubular structures along with their estimated radii. This measure is then distributed to create a vector field which allows the flux maximizing flow algorithm of Vasilevskiy and Siddiqi [Vasilevskiy, A., Siddiqi, K., 2002. Flux maximizing geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (12), 1565-1578] to be applied to recover vessel boundaries. We carry out a qualitative validation of the approach on PD, MR angiography and Gadolinium enhanced MRI volumes and suggest a new way to visualize the segmentations in 2D with masked projections. We validate the approach quantitatively on a single-subject data set consisting of PD, phase contrast (PC) angiography and time of flight (TOF) angiography volumes, with an expert segmented version of the TOF volume viewed as the ground truth. We then validate the approach quantitatively on 19 PD data sets from a new digital brain phantom, with semi-automatically obtained labels from the corresponding angiography volumes viewed as ground truth. A significant finding is that both for the single-subject and multi-subject studies, 90% or more of the vasculature in the ground truth segmentation is recovered from the automatic segmentation of the other volumes.

摘要

现代神经外科手术利用患者脑部解剖结构和血管系统的磁共振成像(MRI)进行术前规划和术中引导。通常会进行双回波采集,生成质子密度(PD)和T2加权图像,以评估肿瘤或病变附近的水肿情况。在本文中,我们开发了一种用于在PD图像中分割血管系统的新型几何流,该几何流也可应用于更容易处理的磁共振血管造影数据或钆增强MRI情况。从PD数据中获取血管系统具有临床意义,因为此类图像的采集很普遍,扫描过程是非侵入性的,并且血管分割方法的可用性可以避免在术前成像期间需要额外的血管造影或基于造影剂的序列。关键思想是首先应用弗兰吉(Frangi)的血管性度量[弗兰吉,A.,尼森,W.,温肯,K.L.,维杰弗,M.A.,1998年。多尺度血管增强滤波。见:医学图像计算与计算机辅助干预国际会议,《计算机科学讲义》第1496卷,第130 - 137页]来找到管状结构的假定中心线及其估计半径。然后对该度量进行分布以创建一个向量场,这使得瓦西列夫斯基(Vasilevskiy)和西迪基(Siddiqi)[瓦西列夫斯基,A.,西迪基,K.,2002年。通量最大化几何流。《模式分析与机器智能汇刊》24(12),第1565 - 1578页]的通量最大化流算法能够应用于恢复血管边界。我们对该方法在PD、磁共振血管造影和钆增强MRI体积数据上进行了定性验证,并提出了一种通过掩码投影在二维中可视化分割结果的新方法。我们在一个由PD、相位对比(PC)血管造影和飞行时间(TOF)血管造影体积组成的单受试者数据集上对该方法进行了定量验证,将TOF体积的专家分割版本视为真实情况。然后我们在来自一个新的数字脑模型的19个PD数据集上对该方法进行了定量验证,将从相应血管造影体积中半自动获得的标签视为真实情况。一个重要发现是,无论是在单受试者还是多受试者研究中,真实分割中90%或更多的血管系统都能从其他体积的自动分割中恢复出来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验