McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
Int J Comput Assist Radiol Surg. 2012 Sep;7(5):667-85. doi: 10.1007/s11548-012-0680-y. Epub 2012 Mar 24.
We describe and validate a novel hybrid nonlinear vessel registration algorithm for intra-operative updating of preoperative magnetic resonance (MR) images using Doppler ultrasound (US) images acquired on the dura for the correction of brain-shift and registration inaccuracies. We also introduce an US vessel appearance simulator that generates vessel images similar in appearance to that acquired with US from MR angiography data.
Our registration uses the minimum amount of preprocessing to extract vessels from the raw volumetric images. This prevents the removal of important registration information and minimizes the introduction of artifacts that may affect robustness, while reducing the amount of extraneous information in the image to be processed, thus improving the convergence speed of the algorithm. We then completed 3 rounds of validation for our vessel registration method for robustness and accuracy using (i) a large number of synthetic trials generated with our US vessel simulator, (ii) US images acquired from a real physical phantom made from polyvinyl alcohol cryogel, and (iii) real clinical data gathered intra-operatively from 3 patients.
Resulting target registration errors (TRE) of less than 2.5 mm are achieved in more than 90 % of the synthetic trials when the initial TREs are less than 20 mm. TREs of less than 2 mm were achieved when the technique was applied to the physical phantom, and TREs of less than 3 mm were achieved on clinical data.
These test trials show that the proposed algorithm is not only accurate but also highly robust to noise and missing vessel segments when working with US images acquired in a wide range of real-world conditions.
我们描述并验证了一种新的混合非线性血管配准算法,用于使用术中获取的硬脑膜上的多普勒超声 (US) 图像更新术前磁共振 (MR) 图像,以纠正脑移位和配准不准确。我们还引入了一种 US 血管外观模拟器,可生成与从 MR 血管造影数据获取的 US 相似的血管图像。
我们的配准使用最少的预处理从原始容积图像中提取血管。这可以防止重要的配准信息被移除,并最大限度地减少可能影响鲁棒性的伪影的引入,同时减少图像中要处理的多余信息的数量,从而提高算法的收敛速度。然后,我们使用 (i) 我们的 US 血管模拟器生成的大量合成试验、(ii) 从由聚乙烯醇凝胶制成的真实物理体模采集的 US 图像以及 (iii) 术中从 3 名患者收集的真实临床数据,完成了 3 轮对我们的血管配准方法的稳健性和准确性的验证。
当初始 TRE 小于 20mm 时,超过 90%的合成试验中实现了小于 2.5mm 的目标配准误差 (TRE)。当该技术应用于物理体模时,实现了小于 2mm 的 TRE,并且在临床数据上实现了小于 3mm 的 TRE。
这些测试试验表明,该算法不仅准确,而且在处理在各种真实条件下采集的 US 图像时,对噪声和缺失的血管段具有高度的稳健性。