Suppr超能文献

心脏能量代谢的多尺度与模块化分析:修复孤立系统组件的断裂界面

Multiscale and modular analysis of cardiac energy metabolism: repairing the broken interfaces of isolated system components.

作者信息

Van Beek Johannes H G M

机构信息

Centre for Intergrative BioInformatics, VU University, Amsterdam, the Netherlands.

出版信息

Ann N Y Acad Sci. 2008 Mar;1123:155-68. doi: 10.1196/annals.1420.018.

Abstract

Computational models of large molecular systems can be assembled from modules representing biological function emerging from interactions among a small subset of molecules. Experimental information on isolated molecules can be integrated with the response of the network as a whole to estimate crucial missing parameters. As an example, a "skeleton" model is analyzed for the module regulating dynamic adaptation of myocardial oxidative phosphorylation (OxPhos) to fluctuating cardiac energy demand. The module contains adenine nucleotides, creatine, and phosphate groups. Enzyme kinetic equations for two creatine kinase (CK) isoforms were combined with the response time of OxPhos (t mito; generalized time constant) to steps in the cardiac pacing rate to identify all module parameters. To obtain t mito, the time course of O2 uptake was measured for the whole heart. An O2 transport model was used to deconvolute the whole-heart response to the mitochondrial level. By optimizing mitochondrial outer membrane permeability to 21 microm/s the experimental t mito = 3.7 s was reproduced. This in vivo value is about four times larger, or smaller, respectively, than conflicting values obtained from two different in vitro studies. This demonstrates an important rule for multiscale analysis: experimental responses and modeling of the system at the larger scale allow one to estimate essential parameters for the interfaces of components which may have been altered during physical isolation. The model correctly predicts a smaller t mito when CK activity is reduced. The model further predicts a slower response if the muscle CK isoform is overexpressed and a faster response if mitochondrial CK is overexpressed. The CK system is very effective in decreasing maximum levels of ADP during systole and reducing average Pi levels over the whole cardiac cycle.

摘要

大分子系统的计算模型可以由代表一小部分分子间相互作用所产生生物学功能的模块组装而成。关于分离分子的实验信息可以与整个网络的响应相结合,以估计关键的缺失参数。例如,对调节心肌氧化磷酸化(OxPhos)对波动的心脏能量需求进行动态适应的模块,分析了一个“骨架”模型。该模块包含腺嘌呤核苷酸、肌酸和磷酸基团。将两种肌酸激酶(CK)同工型的酶动力学方程与OxPhos的响应时间(t mito;广义时间常数)相结合,以适应心脏起搏率的变化,从而确定所有模块参数。为了获得t mito,测量了整个心脏的氧气摄取时间进程。使用氧气运输模型将整个心脏对线粒体水平的响应进行反卷积。通过将线粒体外膜通透性优化到21微米/秒,再现了实验性的t mito = 3.7秒。这个体内值分别比从两项不同的体外研究中获得的相互矛盾的值大约大四倍或小四倍。这证明了多尺度分析的一个重要规则:在较大尺度上对系统的实验响应和建模允许人们估计在物理分离过程中可能发生改变的组件界面的基本参数。该模型正确地预测了当CK活性降低时t mito会更小。该模型进一步预测,如果肌肉CK同工型过表达,响应会更慢;如果线粒体CK过表达,响应会更快。CK系统在降低收缩期ADP的最大水平和在整个心动周期中降低平均Pi水平方面非常有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验