Suppr超能文献

匹配哺乳动物心脏中的 ATP 供应和需求:体内、体外和计算机模拟视角。

Matching ATP supply and demand in mammalian heart: in vivo, in vitro, and in silico perspectives.

机构信息

Laboratory of Cardiovascular Science, Gerontology Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224-6825, USA.

出版信息

Ann N Y Acad Sci. 2010 Feb;1188:133-42. doi: 10.1111/j.1749-6632.2009.05093.x.

Abstract

Although the heart rapidly adapts cardiac output to match the body's circulatory demands, the regulatory mechanisms ensuring that sufficient ATP is available to perform the required cardiac work are not completely understood. Two mechanisms have been suggested to serve as key regulators: (1) ADP and Pi concentrations--ATP utilization/hydrolysis in the cytosol increases ADP and Pi fluxes to mitochondria and hence the amount of available substrates for ATP production increases; and (2) Ca2+ concentration--ATP utilization/hydrolysis is coupled to changes in free cytosolic calcium and mitochondrial calcium, the latter controlling Ca2+-dependent activation of mitochondrial enzymes taking part in ATP production. Here we discuss the evolving perspectives of each of the putative regulatory mechanisms and the precise molecular targets (dehydrogenase enzymes, ATP synthase) based on existing experimental and theoretical evidence. The data synthesis can generate novel hypotheses and experimental designs to solve the ongoing enigma of energy supply-demand matching in the heart.

摘要

尽管心脏能迅速调节心输出量以适应身体的循环需求,但确保有足够的 ATP 用于完成所需的心脏工作的调节机制尚未完全被理解。有两种机制被认为是关键的调节者:(1)ADP 和 Pi 浓度-细胞质中 ATP 的利用/水解会增加 ADP 和 Pi 向线粒体的通量,因此可用的 ATP 产生底物的量增加;(2)Ca2+浓度-ATP 的利用/水解与细胞质游离钙和线粒体钙的变化相关联,后者控制参与 ATP 产生的线粒体酶的 Ca2+依赖性激活。在这里,我们根据现有的实验和理论证据,讨论了每个假定的调节机制和确切的分子靶点(脱氢酶、ATP 合酶)的不断发展的观点。数据综合可以产生新的假设和实验设计,以解决心脏中能量供需匹配的持续谜团。

相似文献

1
Matching ATP supply and demand in mammalian heart: in vivo, in vitro, and in silico perspectives.
Ann N Y Acad Sci. 2010 Feb;1188:133-42. doi: 10.1111/j.1749-6632.2009.05093.x.
2
The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
Ann N Y Acad Sci. 2008 Mar;1123:69-78. doi: 10.1196/annals.1420.009.
3
Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand.
Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1428-38. doi: 10.1152/ajpheart.00969.2012. Epub 2013 Apr 19.
4
Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
Am J Physiol. 1995 Jan;268(1 Pt 2):H82-91. doi: 10.1152/ajpheart.1995.268.1.H82.
5
Rapid frequency-dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes.
J Physiol. 2017 Mar 15;595(6):2001-2019. doi: 10.1113/JP273589. Epub 2017 Feb 22.
6
The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes.
J Physiol. 1996 Oct 1;496 ( Pt 1)(Pt 1):111-28. doi: 10.1113/jphysiol.1996.sp021669.
7
Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.
Am J Physiol Cell Physiol. 2014 Sep 15;307(6):C499-507. doi: 10.1152/ajpcell.00006.2014. Epub 2014 Jun 11.
8
On being the right size: heart design, mitochondrial efficiency and lifespan potential.
Clin Exp Pharmacol Physiol. 2003 Aug;30(8):590-7. doi: 10.1046/j.1440-1681.2003.03876.x.
10
Control of mitochondrial respiration in the heart in vivo.
Mol Cell Biochem. 1989 Sep 7;89(2):191-7. doi: 10.1007/BF00220775.

引用本文的文献

1
Heart Rhythm Harmony Becomes Discordant as We Age.
Heart Lung Circ. 2025 Jun;34(6):543-555. doi: 10.1016/j.hlc.2025.04.084. Epub 2025 May 11.
2
How the Topology of the Mitochondrial Inner Membrane Modulates ATP Production.
Cells. 2025 Feb 11;14(4):257. doi: 10.3390/cells14040257.
4
Effect of miR-17 on polysaccharide against transmissible gastroenteritis virus.
Front Vet Sci. 2024 Feb 20;11:1360102. doi: 10.3389/fvets.2024.1360102. eCollection 2024.
6
Electro-metabolic signaling.
J Gen Physiol. 2024 Feb 5;156(2). doi: 10.1085/jgp.202313451. Epub 2024 Jan 10.
7
Ca pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights.
Front Physiol. 2023 Jul 17;14:1231259. doi: 10.3389/fphys.2023.1231259. eCollection 2023.
8
Functional remodelling of perinuclear mitochondria alters nucleoplasmic Ca signalling in heart failure.
Philos Trans R Soc Lond B Biol Sci. 2022 Nov 21;377(1864):20210320. doi: 10.1098/rstb.2021.0320. Epub 2022 Oct 3.
9

本文引用的文献

1
Glycolytic oscillations in isolated rabbit ventricular myocytes.
J Biol Chem. 2008 Dec 26;283(52):36321-7. doi: 10.1074/jbc.M804794200. Epub 2008 Oct 23.
2
Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts.
J Physiol. 2008 Sep 1;586(17):4193-208. doi: 10.1113/jphysiol.2008.154732. Epub 2008 Jul 10.
4
Linking cellular energetics to local flow regulation in the heart.
Ann N Y Acad Sci. 2008 Mar;1123:126-33. doi: 10.1196/annals.1420.015.
5
The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
Ann N Y Acad Sci. 2008 Mar;1123:69-78. doi: 10.1196/annals.1420.009.
6
Temperature dependence of the rotation and hydrolysis activities of F1-ATPase.
Biophys J. 2008 Jul;95(2):761-70. doi: 10.1529/biophysj.107.123307. Epub 2008 Mar 28.
7
Mitochondrial Ca2+ and the heart.
Cell Calcium. 2008 Jul;44(1):77-91. doi: 10.1016/j.ceca.2007.11.002. Epub 2008 Feb 21.
8
Excitation-contraction coupling and mitochondrial energetics.
Basic Res Cardiol. 2007 Sep;102(5):369-92. doi: 10.1007/s00395-007-0666-z. Epub 2007 Jul 27.
9
Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation.
Am J Physiol Cell Physiol. 2007 Sep;293(3):C815-29. doi: 10.1152/ajpcell.00355.2006. Epub 2007 Jun 20.
10
Regulation of oxidative phosphorylation through parallel activation.
Biophys Chem. 2007 Sep;129(2-3):93-110. doi: 10.1016/j.bpc.2007.05.013. Epub 2007 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验