Suppr超能文献

拟南芥两种糖基转移酶区域特异性糖基化的动力学分析:通过结构域交换引入新活性

A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities.

作者信息

Cartwright Adam M, Lim Eng-Kiat, Kleanthous Colin, Bowles Dianna J

机构信息

Centre for Novel Agricultural Products, University of York, York, UK.

出版信息

J Biol Chem. 2008 Jun 6;283(23):15724-31. doi: 10.1074/jbc.M801983200. Epub 2008 Mar 31.

Abstract

Plant Family 1 glycosyltransferases (GTs) recognize a wide range of natural and non-natural scaffolds and have considerable potential as biocatalysts for the synthesis of small molecule glycosides. Regiospecificity of glycosylation is an important property, given that many acceptors have multiple potential glycosylation sites. This study has used a domain-swapping approach to explore the determinants of regiospecific glycosylation of two GTs of Arabidopsis thaliana, UGT74F1 and UGT74F2. The flavonoid quercetin was used as a model acceptor, providing five potential sites for O-glycosylation by the two GTs. As is commonly found for many plant GTs, both of these enzymes produce distinct multiple glycosides of quercetin. A high performance liquid chromatography method has been established to perform detailed steady-state kinetic analyses of these concurrent reactions. These data show the influence of each parameter in determining a GT product formation profile toward quercetin. Interestingly, construction and kinetic analyses of a series of UGT74F1/F2 chimeras have revealed that mutating a single amino acid distal to the active site, Asn-142, can lead to the development of a new GT with a more constrained regiospecificity. This ability to form the 4 '-O-glucoside of quercetin is transferable to other flavonoid scaffolds and provides a basis for preparative scale production of flavonoid 4 '-O-glucosides through the use of whole-cell biocatalysis.

摘要

植物家族1糖基转移酶(GTs)可识别多种天然和非天然支架,作为小分子糖苷合成的生物催化剂具有巨大潜力。鉴于许多受体具有多个潜在的糖基化位点,糖基化的区域特异性是一项重要特性。本研究采用结构域交换方法,探究拟南芥两种GTs(UGT74F1和UGT74F2)区域特异性糖基化的决定因素。黄酮类化合物槲皮素用作模型受体,为这两种GTs提供了五个潜在的O-糖基化位点。正如许多植物GTs常见的那样,这两种酶都产生了不同的槲皮素多糖苷。已建立一种高效液相色谱方法,对这些同时发生的反应进行详细的稳态动力学分析。这些数据显示了每个参数在确定GT对槲皮素的产物形成谱方面的影响。有趣的是,一系列UGT74F1/F2嵌合体的构建和动力学分析表明,在活性位点远端突变单个氨基酸Asn-142,可导致产生一种区域特异性更受限的新型GT。这种形成槲皮素4'-O-葡萄糖苷的能力可转移到其他黄酮类支架上,并为通过全细胞生物催化制备规模生产黄酮类4'-O-葡萄糖苷提供了基础。

相似文献

引用本文的文献

3
Structure-function and engineering of plant UDP-glycosyltransferase.植物尿苷二磷酸糖基转移酶的结构功能与工程学
Comput Struct Biotechnol J. 2023 Oct 27;21:5358-5371. doi: 10.1016/j.csbj.2023.10.046. eCollection 2023.
6
Molecular basis for branched steviol glucoside biosynthesis.分支甜菊糖苷生物合成的分子基础。
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):13131-13136. doi: 10.1073/pnas.1902104116. Epub 2019 Jun 10.
8
Biosynthesis of flavone C-glucosides in engineered Escherichia coli.在工程大肠杆菌中黄酮 C-葡萄糖苷的生物合成。
Appl Microbiol Biotechnol. 2018 Feb;102(3):1251-1267. doi: 10.1007/s00253-017-8694-6. Epub 2018 Jan 7.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验