Brazier-Hicks Melissa, Offen Wendy A, Gershater Markus C, Revett Timothy J, Lim Eng-Kiat, Bowles Dianna J, Davies Gideon J, Edwards Robert
Centre for Bioactive Chemistry, Durham University, Durham DH1 3LE, United Kingdom.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20238-43. doi: 10.1073/pnas.0706421104. Epub 2007 Dec 12.
The glucosylation of pollutant and pesticide metabolites in plants controls their bioactivity and the formation of subsequent chemical residues. The model plant Arabidopsis thaliana contains >100 glycosyltransferases (GTs) dedicated to small-molecule conjugation and, whereas 44 of these enzymes catalyze the O-glucosylation of chlorinated phenols, only one, UGT72B1, shows appreciable N-glucosylating activity toward chloroanilines. UGT72B1 is a bifunctional O-glucosyltransferase (OGT) and N-glucosyltransferase (NGT). To investigate this unique dual activity, the structure of the protein was solved, at resolutions up to 1.45 A, in various forms including the Michaelis complex with intact donor analog and trichlorophenol acceptor. The catalytic mechanism and basis for O/N specificity was probed by mutagenesis and domain shuffling with an orthologous enzyme from Brassica napus (BnUGT), which possesses only OGT activity. Mutation of BnUGT at just two positions (D312N and F315Y) installed high levels of NGT activity. Molecular modeling revealed the connectivity of these residues to H19 on UGT72B1, with its mutagenesis exclusively defining NGT activity in the Arabidopsis enzyme. These results shed light on the conjugation of nonnatural substrates by plant GTs, highlighting the catalytic plasticity of this enzyme class and the ability to engineer unusual and desirable transfer to nitrogen-based acceptors.
植物中污染物和农药代谢物的糖基化作用控制着它们的生物活性以及后续化学残留物的形成。模式植物拟南芥含有100多种专门用于小分子共轭的糖基转移酶(GTs),其中44种酶催化氯酚的O-糖基化反应,而只有一种酶UGT72B1对氯苯胺显示出可观的N-糖基化活性。UGT72B1是一种双功能O-糖基转移酶(OGT)和N-糖基转移酶(NGT)。为了研究这种独特的双重活性,以高达1.45埃的分辨率解析了该蛋白质的多种形式的结构,包括与完整供体类似物和三氯苯酚受体形成的米氏复合物。通过诱变和与来自甘蓝型油菜(BnUGT)的同源酶进行结构域改组来探究O/N特异性的催化机制和基础,BnUGT仅具有OGT活性。BnUGT仅在两个位置(D312N和F315Y)发生突变就产生了高水平的NGT活性。分子建模揭示了这些残基与UGT72B1上的H19的连接性,对其进行诱变专门确定了拟南芥酶中的NGT活性。这些结果揭示了植物GTs对非天然底物的共轭作用,突出了这类酶的催化可塑性以及将异常且理想的转移作用设计到基于氮的受体上的能力。