Suppr超能文献

对动态刺激进行尖峰编码和解码。

Encoding and decoding spikes for dynamic stimuli.

作者信息

Natarajan Rama, Huys Quentin J M, Dayan Peter, Zemel Richard S

机构信息

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.

出版信息

Neural Comput. 2008 Sep;20(9):2325-60. doi: 10.1162/neco.2008.01-07-436.

Abstract

Naturally occurring sensory stimuli are dynamic. In this letter, we consider how spiking neural populations might transmit information about continuous dynamic stimulus variables. The combination of simple encoders and temporal stimulus correlations leads to a code in which information is not readily available to downstream neurons. Here, we explore a complex encoder that is paired with a simple decoder that allows representation and manipulation of the dynamic information in neural systems. The encoder we present takes the form of a biologically plausible recurrent spiking neural network where the output population recodes its inputs to produce spikes that are independently decodeable. We show that this network can be learned in a supervised manner by a simple local learning rule.

摘要

自然产生的感觉刺激是动态的。在这封信中,我们考虑了发放脉冲的神经群体如何传递有关连续动态刺激变量的信息。简单编码器和时间刺激相关性的结合导致了一种编码,其中信息不容易被下游神经元获取。在这里,我们探索了一种与简单解码器配对的复杂编码器,该解码器允许在神经系统中表示和操纵动态信息。我们提出的编码器采用了一种生物学上合理的循环发放脉冲神经网络的形式,其中输出群体对其输入进行重新编码,以产生可独立解码的脉冲。我们表明,这个网络可以通过一个简单的局部学习规则以监督的方式进行学习。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验