Suppr超能文献

学习用概率群体编码估计动态状态。

Learning to Estimate Dynamical State with Probabilistic Population Codes.

作者信息

Makin Joseph G, Dichter Benjamin K, Sabes Philip N

机构信息

Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, California, United States of America.

Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America.

出版信息

PLoS Comput Biol. 2015 Nov 5;11(11):e1004554. doi: 10.1371/journal.pcbi.1004554. eCollection 2015 Nov.

Abstract

Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.

摘要

追踪移动物体,包括自身身体,是高等生物的一项基本能力,在许多感知和运动任务中发挥着核心作用。虽然尚不清楚大脑如何学习跟踪和预测物体的动态,但已知这种状态估计过程可以完全从噪声观测的统计数据中学习。当动态特性只是带有加性高斯噪声的线性时,最优解就是著名的卡尔曼滤波器(KF),其参数可以通过潜变量密度估计(EM算法)来学习。然而,大脑并不会直接操作矩阵和向量,而是似乎用神经元群体的放电率来表示概率分布,即“概率群体编码”。我们表明,一种循环神经网络——指数族和声琴(EFH)的一种修改形式——以线性概率群体编码作为输入,可以在无监督的情况下学习估计线性动态系统的状态。在观察到一系列对移动物体位置的群体反应(尖峰计数)后,该网络学会表示物体的速度,并对下一个时间步的位置形成近乎最优的预测。这一结果建立在我们之前的工作基础上,该工作表明类似的网络可以学习对静态刺激执行多感官整合和坐标变换。经过训练的网络的感受野也对发育中和学习中的大脑做出了定性预测:对输入中未明确出现的高阶动态状态的调谐逐渐出现,表现为对低阶状态的延迟调谐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1342/4634970/dccfde4d3aa0/pcbi.1004554.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验