Computational Vision and Neuroscience Group, Max Planck Institute for Biological Cybernetics Tübingen, Germany.
Front Comput Neurosci. 2009 Oct 28;3:21. doi: 10.3389/neuro.10.021.2009. eCollection 2009.
The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studied explicitly in the noiseless case. Here, we study decoding rules for probabilistic inference of a continuous stimulus from the spike times of a population of leaky integrate-and-fire neurons with threshold noise. We derive three algorithms for approximating the posterior distribution over stimuli as a function of the observed spike trains. In addition to a reconstruction of the stimulus we thus obtain an estimate of the uncertainty as well. Furthermore, we derive a 'spike-by-spike' online decoding scheme that recursively updates the posterior with the arrival of each new spike. We use these decoding rules to reconstruct time-varying stimuli represented by a Gaussian process from spike trains of single neurons as well as neural populations.
在尖峰神经元中,动作电位的时间取决于其输入的时间动态,并包含有关刺激时间波动的信息。漏积分和放电神经元构成了一种流行的编码模型,其中尖峰时间直接取决于输入的时间结构。然而,这些模型的最优解码规则仅在无噪声情况下被明确研究过。在这里,我们研究了从具有阈值噪声的漏积分和放电神经元群体的尖峰时间中对连续刺激进行概率推断的解码规则。我们推导出了三种算法,可将刺激的后验分布近似为观察到的尖峰序列的函数。除了对刺激的重建,我们还因此获得了对不确定性的估计。此外,我们推导出一种“逐脉冲”在线解码方案,该方案随着每个新脉冲的到达,用递归方式更新后验分布。我们使用这些解码规则,从单个神经元和神经元群体的尖峰序列中重建由高斯过程表示的时变刺激。