Condamin S, Tejedor V, Voituriez R, Bénichou O, Klafter J
Laboratoire de Physique Théorique de la Matière Condensée (Unité Mixte de Recherche 7600), case courrier 121, Université Paris 6, 4 Place Jussieu, 75255 Paris Cedex, France.
Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5675-80. doi: 10.1073/pnas.0712158105. Epub 2008 Apr 7.
Subdiffusive motion of tracer particles in complex crowded environments, such as biological cells, has been shown to be widespread. This deviation from Brownian motion is usually characterized by a sublinear time dependence of the mean square displacement (MSD). However, subdiffusive behavior can stem from different microscopic scenarios that cannot be identified solely by the MSD data. In this article we present a theoretical framework that permits the analytical calculation of first-passage observables (mean first-passage times, splitting probabilities, and occupation times distributions) in disordered media in any dimensions. This analysis is applied to two representative microscopic models of subdiffusion: continuous-time random walks with heavy tailed waiting times and diffusion on fractals. Our results show that first-passage observables provide tools to unambiguously discriminate between the two possible microscopic scenarios of subdiffusion. Moreover, we suggest experiments based on first-passage observables that could help in determining the origin of subdiffusion in complex media, such as living cells, and discuss the implications of anomalous transport to reaction kinetics in cells.
示踪粒子在复杂拥挤环境(如生物细胞)中的亚扩散运动已被证明广泛存在。这种与布朗运动的偏差通常以均方位移(MSD)的亚线性时间依赖性为特征。然而,亚扩散行为可能源于不同的微观情形,仅通过MSD数据无法识别这些情形。在本文中,我们提出了一个理论框架,该框架允许对任意维度无序介质中的首次通过可观测量(平均首次通过时间、分裂概率和占据时间分布)进行解析计算。该分析应用于亚扩散的两个代表性微观模型:具有重尾等待时间的连续时间随机游走和分形上的扩散。我们的结果表明,首次通过可观测量提供了明确区分亚扩散两种可能微观情形的工具。此外,我们建议基于首次通过可观测量进行实验,这有助于确定复杂介质(如活细胞)中亚扩散的起源,并讨论反常输运对细胞反应动力学的影响。