Suppr超能文献

Gleason分级的观察者间可重复性:使用前列腺癌组织微阵列进行评估

Interobserver reproducibility of Gleason grading: evaluation using prostate cancer tissue microarrays.

作者信息

Burchardt M, Engers R, Müller M, Burchardt T, Willers R, Epstein J I, Ackermann R, Gabbert H E, de la Taille A, Rubin M A

机构信息

Department of Urology, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, Hannover, Germany.

出版信息

J Cancer Res Clin Oncol. 2008 Oct;134(10):1071-8. doi: 10.1007/s00432-008-0388-0. Epub 2008 Apr 8.

Abstract

OBJECTIVES

Due to PSA screening and increased awareness, prostate cancer (PCa) is identified earlier resulting in smaller diagnostic samples on prostate needle biopsy. Because Gleason grading plays a critical role in treatment planning, we undertook a controlled study to evaluate interobserver variability among German pathologists to grade small PCas using a series of tissue microarray (TMA) images.

METHODS

We have previously demonstrated excellent agreement in Gleason grading using TMAs among expert genitourinary pathologists. In the current study, we identified 331 TMA images (95% PCa and 5% benign) to be evaluated by an expert PCa pathologist and subsequently by practicing pathologists throughout Germany. The images were presented using the Bacus Webslide Browser on a CD-ROM. Evaluations were kept anonymous and participant's scoring was compared to the expert's results.

RESULTS

A total of 29 German pathologists analysed an average of 278 images. Mean percentage of TMA images which had been assigned the same Gleason score (GS) as done by the expert was 45.7%. GSs differed by no more than one point (+/-1) in 83.5% of the TMA samples evaluated. The respondents were able to correctly assign a GS into clinically relevant categories (i.e. <7, 7, >7) in 68.3% of cases. A total of 75.9% respondents under-graded the TMA images. Gleason grading agreement with the expert reviewer correlated with the number of biopsies evaluated by the pathologist per week. Years of diagnostic experience, self-description as a urologic pathologist or affiliation with a university hospital did not correlate with the pathologist's performance.

CONCLUSION

The vast majority of participants under-graded the small tumors. Clinically relevant GS categories were correctly assigned in 68% of cases. This raises a potentially significant problem for pathologists, who have not had as much experience evaluating small PCas.

摘要

目的

由于前列腺特异性抗原(PSA)筛查及意识提高,前列腺癌(PCa)得以更早发现,导致前列腺穿刺活检的诊断样本更小。因为 Gleason 分级在治疗规划中起着关键作用,我们开展了一项对照研究,以评估德国病理学家之间使用一系列组织微阵列(TMA)图像对小 PCa 进行分级的观察者间变异性。

方法

我们之前已证明泌尿生殖系统病理专家在使用 TMA 进行 Gleason 分级方面具有高度一致性。在当前研究中,我们确定了 331 张 TMA 图像(95%为 PCa,5%为良性),先由一位 PCa 病理专家进行评估,随后由德国各地的执业病理学家进行评估。这些图像通过 Bacus 网络幻灯片浏览器在光盘上呈现。评估保持匿名,并将参与者的评分与专家结果进行比较。

结果

共有 29 位德国病理学家平均分析了 278 张图像。与专家给出相同 Gleason 评分(GS)的 TMA 图像的平均百分比为 45.7%。在 83.5%的评估 TMA 样本中,GS 的差异不超过一分(±1)。在 68.3%的病例中,受访者能够将 GS 正确归入临床相关类别(即<7、7、>7)。共有 75.9%的受访者对 TMA 图像分级过低。与专家评审员的 Gleason 分级一致性与病理学家每周评估的活检数量相关。诊断经验年限、自我描述为泌尿病理学家或与大学医院的隶属关系与病理学家的表现无关。

结论

绝大多数参与者对小肿瘤分级过低。在 68%的病例中正确分配了临床相关的 GS 类别。这给没有太多评估小 PCa 经验的病理学家带来了一个潜在的重大问题。

相似文献

1
Interobserver reproducibility of Gleason grading: evaluation using prostate cancer tissue microarrays.
J Cancer Res Clin Oncol. 2008 Oct;134(10):1071-8. doi: 10.1007/s00432-008-0388-0. Epub 2008 Apr 8.
4
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780.
5
Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Oct 14;10(10):CD015618. doi: 10.1002/14651858.CD015618.
7
Antibody tests for identification of current and past infection with SARS-CoV-2.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2.
8
Intraoperative frozen section analysis for the diagnosis of early stage ovarian cancer in suspicious pelvic masses.
Cochrane Database Syst Rev. 2016 Mar 1;3(3):CD010360. doi: 10.1002/14651858.CD010360.pub2.
9
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.
Cochrane Database Syst Rev. 2022 Mar 2;3(3):CD013387. doi: 10.1002/14651858.CD013387.pub2.

引用本文的文献

3
Artificial intelligence in pathologic diagnosis, prognosis and prediction of prostate cancer.
Am J Clin Exp Urol. 2024 Aug 25;12(4):200-215. doi: 10.62347/JSAE9732. eCollection 2024.
5
Digital pathology systems enabling quality patient care.
Genes Chromosomes Cancer. 2023 Nov;62(11):685-697. doi: 10.1002/gcc.23192. Epub 2023 Jul 17.
6
Navigating the Collagen Jungle: The Biomedical Potential of Fiber Organization in Cancer.
Bioengineering (Basel). 2021 Jan 21;8(2):17. doi: 10.3390/bioengineering8020017.
7
Systematic Assessment of Tumor Purity and Its Clinical Implications.
JCO Precis Oncol. 2020 Sep 4;4. doi: 10.1200/PO.20.00016. eCollection 2020.
8
Multi-scale tissue architecture analysis of favorable-risk prostate cancer: Correlation with biochemical recurrence.
Investig Clin Urol. 2020 Sep;61(5):482-490. doi: 10.4111/icu.20200018. Epub 2020 Jul 28.

本文引用的文献

1
4
The value of multiple core biopsies for predicting the Gleason score of prostate cancer.
BJU Int. 2001 Nov;88(7):716-21. doi: 10.1046/j.1464-4096.2001.02419.x.
5
Tissue microarray sampling strategy for prostate cancer biomarker analysis.
Am J Surg Pathol. 2002 Mar;26(3):312-9. doi: 10.1097/00000478-200203000-00004.
6
Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium.
Urology. 2001 Dec;58(6):843-8. doi: 10.1016/s0090-4295(01)01441-8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验