Fujii Tatsuya, Yamaguchi Syuhei, Hirota Shun, Masuda Hideki
Department of Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
Dalton Trans. 2008 Jan 7(1):164-70. doi: 10.1039/b712572k.
Hydrogen atom abstraction reactions have been implicated in oxygenation reactions catalyzed by copper monooxygenases such as peptidylglycine alpha-hydroxylating monooxygenase (PHM) and dopamine beta-monooxygenase (DbetaM). We have investigated mononuclear copper(I) and copper(II) complexes with bis[(6-neopentylamino-2-pyridyl)methyl][(2-pyridyl)methyl]amine (BNPA) as functional models for these enzymes. The reaction of [Cu(II)(bnpa)]2+ with H2O2, affords a quasi-stable mononuclear copper(II)-hydroperoxo complex, [Cu(II)(bnpa)(OOH)]+ (4) which is stabilized by hydrophobic interactions and hydrogen bonds in the vicinity of the copper(II) ion. On the other hand, the reaction of [Cu(I)(bnpa)]+ (1) with O2 generates a trans-mu-1,2-peroxo dicopper(II) complex [Cu(II)2(bnpa)2(O2(2-]2+ (2). Interestingly, the same reactions carried out in the presence of exogenous substrates such as TEMPO-H, produce a mononuclear copper(II)-hydroperoxo complex 4. Under these conditions, the H-atom abstraction reaction proceeds via the mononuclear copper(II)-superoxo intermediate [Cu(II)(bnpa)(O2-)]+ (3), as confirmed from indirect observations using a spin trap reagent. Reactions with several substrates having different bond dissociation energies (BDE) indicate that, under our experimental conditions the H-atom abstraction reaction proceeds for substrates with a weak X-H bond (BDE < 72.6 kcal mol(-1)). These investigations indicate that the copper(II)-hydroperoxo complex is a useful tool for elucidation of H-atom abstraction reaction mechanisms for exogenous substrates. The useful functionality of the complex has been achieved via careful control of experimental conditions and the choice of appropriate ligands for the complex.
氢原子提取反应与由单加氧酶催化的氧化反应有关,如肽基甘氨酸α-羟基化单加氧酶(PHM)和多巴胺β-单加氧酶(DβM)。我们研究了以双[(6-新戊基氨基-2-吡啶基)甲基][(2-吡啶基)甲基]胺(BNPA)为功能模型的单核铜(I)和铜(II)配合物。[Cu(II)(bnpa)]2+与H2O2反应,生成一种准稳定的单核铜(II)-氢过氧配合物[Cu(II)(bnpa)(OOH)]+(4),它通过铜(II)离子附近的疏水相互作用和氢键得以稳定。另一方面,[Cu(I)(bnpa)]+(1)与O2反应生成反式-μ-1,2-过氧二铜(II)配合物[Cu(II)2(bnpa)2(O22-]2+(2)。有趣的是,在存在外源底物如TEMPO-H的情况下进行相同反应,会生成单核铜(II)-氢过氧配合物4。在这些条件下,氢原子提取反应通过单核铜(II)-超氧中间体[Cu(II)(bnpa)(O2-)]+(3)进行,这通过使用自旋捕获试剂的间接观察得到证实。与几种具有不同键解离能(BDE)的底物反应表明,在我们的实验条件下,对于具有弱X-H键(BDE < 72.6 kcal mol-1)的底物会发生氢原子提取反应。这些研究表明,铜(II)-氢过氧配合物是阐明外源底物氢原子提取反应机制的有用工具。该配合物的有用功能是通过仔细控制实验条件和为配合物选择合适的配体来实现的。