Arvizu-Flores Aldo A, Sugich-Miranda Rocio, Arreola Rodrigo, Garcia-Orozco Karina D, Velazquez-Contreras Enrique F, Montfort William R, Maley Frank, Sotelo-Mundo Rogerio R
Aquatic Molecular Biology Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora 83000, Mexico.
Int J Biochem Cell Biol. 2008;40(10):2206-17. doi: 10.1016/j.biocel.2008.02.025. Epub 2008 Mar 6.
Thymidylate synthase (TS) catalyzes the reductive methylation of deoxyuridine monophosphate (dUMP) using methylene tetrahydrofolate (CH(2)THF) as cofactor, the glutamate tail of which forms a water-mediated hydrogen bond with an invariant lysine residue of this enzyme. To understand the role of this interaction, we studied the K48Q mutant of Escherichia coli TS using structural and biophysical methods. The k(cat) of the K48Q mutant was 430-fold lower than wild-type TS in activity, while the K(m) for the (R)-stereoisomer of CH(2)THF was 300 microM, about 30-fold larger than K(m) from the wild-type TS. Affinity constants were determined using isothermal titration calorimetry, which showed that binding was reduced by one order of magnitude for folate-like TS inhibitors, such as propargyl-dideazafolate (PDDF) or compounds that distort the TS active site like BW1843U89 (U89). The crystal structure of the K48Q-dUMP complex revealed that dUMP binding is not impaired in the mutant, and that U89 in a ternary complex of K48Q-nucleotide-U89 was bound in the active site with subtle differences relative to comparable wild-type complexes. PDDF failed to form ternary complexes with K48Q and dUMP. Thermodynamic data correlated with the structural determinations, since PDDF binding was dominated by enthalpic effects while U89 had an important entropic component. In conclusion, K48 is critical for catalysis since it leads to a productive CH(2)THF binding, while mutation at this residue does not affect much the binding of inhibitors that do not make contact with this group.
胸苷酸合成酶(TS)催化脱氧尿苷单磷酸(dUMP)的还原甲基化反应,以亚甲基四氢叶酸(CH₂THF)作为辅因子,其谷氨酸尾巴与该酶的一个不变赖氨酸残基形成水介导的氢键。为了解这种相互作用的作用,我们使用结构和生物物理方法研究了大肠杆菌TS的K48Q突变体。K48Q突变体的催化常数(kcat)在活性上比野生型TS低430倍,而CH₂THF的(R)-立体异构体的米氏常数(Km)为300μM,比野生型TS的Km大约大30倍。使用等温滴定量热法测定亲和常数,结果表明,对于叶酸样TS抑制剂,如炔丙基-二氮杂叶酸(PDDF)或使TS活性位点扭曲的化合物,如BW1843U89(U89),结合减少了一个数量级。K48Q-dUMP复合物的晶体结构表明,突变体中dUMP的结合没有受损,并且在K48Q-核苷酸-U89的三元复合物中,U89相对于可比的野生型复合物在活性位点的结合存在细微差异。PDDF未能与K48Q和dUMP形成三元复合物。热力学数据与结构测定相关,因为PDDF的结合主要由焓效应主导,而U89具有重要的熵成分。总之,K48对催化至关重要,因为它导致有效的CH₂THF结合,而该残基的突变对不与该基团接触的抑制剂的结合影响不大。