Suppr超能文献

需要用主动机制来描述细胞对亚微秒、兆伏每米脉冲的反应:超短脉冲的细胞模型。

Active mechanisms are needed to describe cell responses to submicrosecond, megavolt-per-meter pulses: cell models for ultrashort pulses.

作者信息

Smith Kyle C, Weaver James C

机构信息

Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Biophys J. 2008 Aug;95(4):1547-63. doi: 10.1529/biophysj.107.121921. Epub 2008 Apr 11.

Abstract

Intracellular effects of submicrosecond, megavolt-per-meter pulses imply changes in a cell's plasma membrane (PM) and organelle membranes. The maximum reported PM transmembrane voltage is only 1.6 V and phosphatidylserine is translocated to the outer membrane leaflet of the PM. Passive membrane models involve only displacement currents and predict excessive PM voltages (approximately 25 V). Here we use a cell system model with nonconcentric circular PM and organelle membranes to demonstrate fundamental differences between active (nonlinear) and passive (linear) models. We assign active or passive interactions to local membrane regions. The resulting cell system model involves a large number of interconnected local models that individually represent the 1), passive conductive and dielectric properties of aqueous electrolytes and membranes; 2), resting potential source; and 3), asymptotic membrane electroporation model. Systems with passive interactions cannot account for key experimental observations. Our active models exhibit supra-electroporation of the PM and organelle membranes, some key features of the transmembrane voltage, high densities of small pores in the PM and organelle membranes, and a global postpulse perturbation in which cell membranes are depolarized on the timescale of pore lifetimes.

摘要

亚微秒级、兆伏每米脉冲的细胞内效应意味着细胞膜(PM)和细胞器膜发生变化。报道的最大PM跨膜电压仅为1.6V,且磷脂酰丝氨酸转移至PM的外膜小叶。被动膜模型仅涉及位移电流,并预测过高的PM电压(约25V)。在此,我们使用具有非同心圆形PM和细胞器膜的细胞系统模型,以展示主动(非线性)模型和被动(线性)模型之间的根本差异。我们将主动或被动相互作用赋予局部膜区域。由此产生的细胞系统模型涉及大量相互连接的局部模型,这些局部模型分别代表:1)水性电解质和膜的被动导电和介电特性;2)静息电位源;3)渐近膜电穿孔模型。具有被动相互作用的系统无法解释关键实验观察结果。我们的主动模型展现出PM和细胞器膜的超电穿孔、跨膜电压的一些关键特征、PM和细胞器膜中小孔的高密度,以及一种整体脉冲后扰动,即细胞膜在孔寿命的时间尺度上发生去极化。

相似文献

2
Microdosimetry for conventional and supra-electroporation in cells with organelles.
Biochem Biophys Res Commun. 2006 Mar 24;341(4):1266-76. doi: 10.1016/j.bbrc.2006.01.094. Epub 2006 Jan 31.
3
Modeling environment for numerical simulation of applied electric fields on biological cells.
Electromagn Biol Med. 2007;26(3):239-50. doi: 10.1080/15368370701572712.
4
Modeling electroporation in a single cell.
Biophys J. 2007 Jan 15;92(2):404-17. doi: 10.1529/biophysj.106.094235. Epub 2006 Oct 20.
5
Electroporation of a lipid bilayer as a chemical reaction.
Bioelectromagnetics. 2004 Dec;25(8):634-7. doi: 10.1002/bem.20060.
6
Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021904. doi: 10.1103/PhysRevE.74.021904. Epub 2006 Aug 3.
7
Numerical modeling of in vivo plate electroporation thermal dose assessment.
J Biomech Eng. 2006 Feb;128(1):76-84. doi: 10.1115/1.2132375.
8
Bioelectric effects of intense ultrashort pulses.
Crit Rev Biomed Eng. 2010;38(3):255-304. doi: 10.1615/critrevbiomedeng.v38.i3.20.
9
Intracellular electroporation site distributions: modeling examples for nsPEF and IRE pulse waveforms.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:732-5. doi: 10.1109/IEMBS.2011.6090166.
10
In silico estimates of cell electroporation by electrical incapacitation waveforms.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6505-8. doi: 10.1109/IEMBS.2009.5333138.

引用本文的文献

1
Modulating Ca influx into adrenal chromaffin cells with short-duration nanosecond electric pulses.
Biophys J. 2024 Aug 20;123(16):2537-2556. doi: 10.1016/j.bpj.2024.06.021. Epub 2024 Jun 21.
3
Dielectric Dispersion Modulated Sensing of Yeast Suspension Electroporation.
Sensors (Basel). 2022 Feb 25;22(5):1811. doi: 10.3390/s22051811.
4
Effects of electrically-induced constant tension on giant unilamellar vesicles using irreversible electroporation.
Eur Biophys J. 2019 Dec;48(8):731-741. doi: 10.1007/s00249-019-01398-9. Epub 2019 Sep 24.
7
Prospects for commercial production of diatoms.
Biotechnol Biofuels. 2017 Jan 18;10:16. doi: 10.1186/s13068-017-0699-y. eCollection 2017.
8
The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.
PLoS One. 2016 Jul 8;11(7):e0158739. doi: 10.1371/journal.pone.0158739. eCollection 2016.
9
Basic features of a cell electroporation model: illustrative behavior for two very different pulses.
J Membr Biol. 2014 Dec;247(12):1209-28. doi: 10.1007/s00232-014-9699-z. Epub 2014 Jul 22.
10
Cancellation of cellular responses to nanoelectroporation by reversing the stimulus polarity.
Cell Mol Life Sci. 2014 Nov;71(22):4431-41. doi: 10.1007/s00018-014-1626-z. Epub 2014 Apr 21.

本文引用的文献

2
Membrane permeabilization and cell damage by ultrashort electric field shocks.
Arch Biochem Biophys. 2007 Sep 1;465(1):109-18. doi: 10.1016/j.abb.2007.05.003. Epub 2007 May 24.
6
Lipid rafts: at a crossroad between cell biology and physics.
Nat Cell Biol. 2007 Jan;9(1):7-14. doi: 10.1038/ncb0107-7.
7
Modeling electroporation in a single cell.
Biophys J. 2007 Jan 15;92(2):404-17. doi: 10.1529/biophysj.106.094235. Epub 2006 Oct 20.
8
Nanoelectropulse-driven membrane perturbation and small molecule permeabilization.
BMC Cell Biol. 2006 Oct 19;7:37. doi: 10.1186/1471-2121-7-37.
9
Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021904. doi: 10.1103/PhysRevE.74.021904. Epub 2006 Aug 3.
10
Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation.
Biochem Biophys Res Commun. 2006 Oct 20;349(2):643-53. doi: 10.1016/j.bbrc.2006.08.097. Epub 2006 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验