Suppr超能文献

合成聚合物支架的孔隙率和力学性能对骨软骨缺损修复的影响。

The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects.

作者信息

Ikeda Risa, Fujioka Hiroyuki, Nagura Issei, Kokubu Takeshi, Toyokawa Narikazu, Inui Atsuyuki, Makino Takeshi, Kaneko Hiroaki, Doita Minoru, Kurosaka Masahiro

机构信息

Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.

出版信息

Int Orthop. 2009 Jun;33(3):821-8. doi: 10.1007/s00264-008-0532-0. Epub 2008 Apr 16.

Abstract

We have made three types of poly (DL-lactide-co-glycolide) (PLG) scaffolds (porosity: scaffold I 80 +/- 0.9%, II 85 +/- 0.8%, III 92 +/- 0.7%; compression module determined with 10% strain: scaffold I 0.26 MPa, II 0.091 MPa, III 0.0047 MPa). Osteochondral defects made in the femoral condyle of rabbits were treated with these scaffolds and the possibilities of cartilage repair were investigated histologically. At post-operative weeks 6 and 12, histological scores in the groups of scaffolds II and III were significantly higher than the score in the group of scaffold I. Scaffolds II and III, which have higher porosity than scaffold I, allow better migration of bone marrow cells and better replacement of the scaffold with bone and cartilage than scaffold I. This study suggests that higher porosity allowing bone marrow cells to migrate to the scaffold is important in repairing osteochondral defects.

摘要

我们制备了三种聚(DL-丙交酯-乙交酯)(PLG)支架(孔隙率:支架I 80±0.9%,II 85±0.8%,III 92±0.7%;在10%应变下测定的压缩模量:支架I 0.26兆帕,II 0.091兆帕,III 0.0047兆帕)。用这些支架治疗兔股骨髁的骨软骨缺损,并通过组织学研究软骨修复的可能性。在术后第6周和第12周,支架II和III组的组织学评分显著高于支架I组。与支架I相比,孔隙率更高的支架II和III能使骨髓细胞更好地迁移,并且骨和软骨对支架的替代效果更好。本研究表明,较高的孔隙率使骨髓细胞能够迁移到支架上,这对修复骨软骨缺损很重要。

相似文献

1
The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects.
Int Orthop. 2009 Jun;33(3):821-8. doi: 10.1007/s00264-008-0532-0. Epub 2008 Apr 16.
2
Repair of osteochondral defects with a new porous synthetic polymer scaffold.
J Bone Joint Surg Br. 2007 Feb;89(2):258-64. doi: 10.1302/0301-620X.89B2.17754.
3
In vivo bone engineering in a rabbit femur.
J Craniofac Surg. 2003 May;14(3):324-32. doi: 10.1097/00001665-200305000-00010.
4
Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model.
Arthroscopy. 2010 Mar;26(3):375-83. doi: 10.1016/j.arthro.2009.08.006. Epub 2009 Dec 30.
5
Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
J Orthop Res. 2007 Oct;25(10):1277-90. doi: 10.1002/jor.20442.
8
Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model.
Knee Surg Sports Traumatol Arthrosc. 2014 Jun;22(6):1424-33. doi: 10.1007/s00167-012-2256-3. Epub 2012 Oct 30.
9
Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds.
Osteoarthritis Cartilage. 2005 Apr;13(4):297-309. doi: 10.1016/j.joca.2004.12.016.
10
A new bioabsorbable cotton-textured synthetic polymer scaffold for osteochondral repair.
Int Orthop. 2014 Nov;38(11):2413-20. doi: 10.1007/s00264-013-2253-2. Epub 2014 Jan 3.

引用本文的文献

2
Growth of Mesenchymal Stem Cells on Poly(3-Hydroxybutyrate) Scaffolds Loaded with Simvastatin.
Bull Exp Biol Med. 2021 May;171(1):172-177. doi: 10.1007/s10517-021-05190-8. Epub 2021 May 28.
3
Scaffold-Dependent Mechanical and Architectural Cues Guide Osteochondral Defect Healing .
Front Bioeng Biotechnol. 2021 Feb 15;9:642217. doi: 10.3389/fbioe.2021.642217. eCollection 2021.
4
Nanostructured Biomaterials for Bone Regeneration.
Front Bioeng Biotechnol. 2020 Aug 21;8:922. doi: 10.3389/fbioe.2020.00922. eCollection 2020.
5
Combined culture experiment of mouse bone marrow mesenchymal stem cells and bioceramic scaffolds.
Exp Ther Med. 2020 Nov;20(5):19. doi: 10.3892/etm.2020.9147. Epub 2020 Aug 27.
8
Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering.
J Biol Phys. 2018 Sep;44(3):245-271. doi: 10.1007/s10867-018-9482-y. Epub 2018 Mar 5.
9
Template-free synthesis of polystyrene monoliths for the removal of oil-in-water emulsion.
Sci Rep. 2017 Jul 26;7(1):6534. doi: 10.1038/s41598-017-06572-7.

本文引用的文献

1
Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials.
Biomaterials. 2007 Jul;28(20):3091-100. doi: 10.1016/j.biomaterials.2007.03.017. Epub 2007 Mar 18.
2
Repair of osteochondral defects with a new porous synthetic polymer scaffold.
J Bone Joint Surg Br. 2007 Feb;89(2):258-64. doi: 10.1302/0301-620X.89B2.17754.
3
Repair of full-thickness cartilage defects with cells of different origin in a rabbit model.
Arthroscopy. 2007 Feb;23(2):178-87. doi: 10.1016/j.arthro.2006.09.005.
4
Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation.
Int Orthop. 2006 Oct;30(5):357-61. doi: 10.1007/s00264-006-0120-0. Epub 2006 Apr 11.
5
Osteochondral autografting (mosaicplasty) in grade IV cartilage defects in the knee joint: 2- to 7-year results.
Int Orthop. 2006 Jun;30(3):200-4. doi: 10.1007/s00264-005-0068-5. Epub 2006 Mar 8.
6
Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model.
Arthroscopy. 2005 Oct;21(10):1155-63. doi: 10.1016/j.arthro.2005.06.016.
8
Regeneration of articular cartilage--evaluation of osteochondral defect repair in the rabbit using multiphasic implants.
Osteoarthritis Cartilage. 2005 Sep;13(9):798-807. doi: 10.1016/j.joca.2005.04.018.
10
Porosity of 3D biomaterial scaffolds and osteogenesis.
Biomaterials. 2005 Sep;26(27):5474-91. doi: 10.1016/j.biomaterials.2005.02.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验