LeBard David N, Matyushov Dmitry V
Center for Biological Physics, Arizona State University, Tempe, AZ 85287-1604, USA.
J Chem Phys. 2008 Apr 21;128(15):155106. doi: 10.1063/1.2904879.
We report applications of analytical formalisms and molecular dynamics (MD) simulations to the calculation of redox entropy of plastocyanin metalloprotein in aqueous solution. The goal of our analysis is to establish critical components of the theory required to describe polar solvation at the mesoscopic scale. The analytical techniques include a microscopic formalism based on structure factors of the solvent dipolar orientations and density and continuum dielectric theories. The microscopic theory employs the atomistic structure of the protein with force-field atomic charges and solvent structure factors obtained from separate MD simulations of the homogeneous solvent. The MD simulations provide linear response solvation free energies and reorganization energies of electron transfer in the temperature range of 280-310 K. We found that continuum models universally underestimate solvation entropies, and a more favorable agreement is reported between the microscopic calculations and MD simulations. The analysis of simulations also suggests that difficulties of extending standard formalisms to protein solvation are related to the inhomogeneous structure of the solvation shell at the protein-water interface combining islands of highly structured water around ionized residues along with partial dewetting of hydrophobic patches. Quantitative theories of electrostatic protein hydration need to incorporate realistic density profile of water at the protein-water interface.
我们报告了分析形式主义和分子动力学(MD)模拟在计算水溶液中质体蓝素金属蛋白氧化还原熵方面的应用。我们分析的目标是建立描述介观尺度上极性溶剂化所需理论的关键组成部分。分析技术包括基于溶剂偶极取向结构因子、密度和连续介质电介质理论的微观形式主义。微观理论采用具有力场原子电荷的蛋白质原子结构以及从均匀溶剂的单独MD模拟中获得的溶剂结构因子。MD模拟提供了280 - 310 K温度范围内电子转移的线性响应溶剂化自由能和重组能。我们发现连续介质模型普遍低估了溶剂化熵,并且微观计算与MD模拟之间的一致性更好。模拟分析还表明,将标准形式主义扩展到蛋白质溶剂化的困难与蛋白质 - 水界面处溶剂化壳的不均匀结构有关,该结构结合了围绕离子化残基的高度结构化水岛以及疏水区域的部分去湿。静电蛋白质水合作用的定量理论需要纳入蛋白质 - 水界面处水的实际密度分布。