Suppr超能文献

基于概率的多臂部肌肉活动预测:对功能性电刺激的启示

Probability-based prediction of activity in multiple arm muscles: implications for functional electrical stimulation.

作者信息

Anderson Chad V, Fuglevand Andrew J

机构信息

Department of Physiology, University of Arizona, Tucson, Arizona 85721-0093, USA.

出版信息

J Neurophysiol. 2008 Jul;100(1):482-94. doi: 10.1152/jn.00956.2007. Epub 2008 Apr 24.

Abstract

Functional electrical stimulation (FES) involves artificial activation of muscles with implanted electrodes to restore motor function in paralyzed individuals. The range of motor behaviors that can be generated by FES, however, is limited to a small set of preprogrammed movements such as hand grasp and release. A broader range of movements has not been implemented because of the substantial difficulty associated with identifying the patterns of muscle stimulation needed to elicit specified movements. To overcome this limitation in controlling FES systems, we used probabilistic methods to estimate the levels of muscle activity in the human arm during a wide range of free movements based on kinematic information of the upper limb. Conditional probability distributions were generated based on hand kinematics and associated surface electromyographic (EMG) signals from 12 arm muscles recorded during a training task involving random movements of the arm in one subject. These distributions were then used to predict in four other subjects the patterns of muscle activity associated with eight different movement tasks. On average, about 40% of the variance in the actual EMG signals could be accounted for in the predicted EMG signals. These results suggest that probabilistic methods ultimately might be used to predict the patterns of muscle stimulation needed to produce a wide array of desired movements in paralyzed individuals with FES.

摘要

功能性电刺激(FES)涉及通过植入电极人工激活肌肉,以恢复瘫痪个体的运动功能。然而,FES能够产生的运动行为范围仅限于一小部分预编程动作,如手部抓握和松开。由于确定引发特定动作所需的肌肉刺激模式存在很大困难,更广泛的动作范围尚未实现。为了克服FES系统控制方面的这一局限性,我们使用概率方法,根据上肢的运动学信息,估计在广泛的自由运动过程中人体手臂的肌肉活动水平。基于一名受试者在涉及手臂随机运动的训练任务中记录的手部运动学和来自12块手臂肌肉的相关表面肌电图(EMG)信号,生成了条件概率分布。然后,这些分布被用于预测其他四名受试者与八项不同运动任务相关的肌肉活动模式。平均而言,预测的肌电图信号能够解释实际肌电图信号中约4444%的方差。这些结果表明,概率方法最终可能用于预测瘫痪个体使用FES产生各种所需动作所需的肌肉刺激模式。

相似文献

引用本文的文献

5
What we think before a voluntary movement.我们在进行自主运动之前的思考。
J Cogn Neurosci. 2013 Jun;25(6):822-9. doi: 10.1162/jocn_a_00360. Epub 2013 Jan 30.
6
Mimicking muscle activity with electrical stimulation.用电刺激模拟肌肉活动。
J Neural Eng. 2011 Feb;8(1):016009. doi: 10.1088/1741-2560/8/1/016009. Epub 2011 Jan 19.
8
Recognition of handwriting from electromyography.从肌电图识别手写体。
PLoS One. 2009 Aug 26;4(8):e6791. doi: 10.1371/journal.pone.0006791.

本文引用的文献

1
Bayesian filtering of myoelectric signals.肌电信号的贝叶斯滤波
J Neurophysiol. 2007 Feb;97(2):1839-45. doi: 10.1152/jn.00936.2006. Epub 2006 Dec 20.
4
Cognitive control signals for neural prosthetics.神经假体的认知控制信号
Science. 2004 Jul 9;305(5681):258-62. doi: 10.1126/science.1097938.
8
Direct cortical control of 3D neuroprosthetic devices.3D神经假体装置的直接皮层控制
Science. 2002 Jun 7;296(5574):1829-32. doi: 10.1126/science.1070291.
10
Instant neural control of a movement signal.运动信号的即时神经控制。
Nature. 2002 Mar 14;416(6877):141-2. doi: 10.1038/416141a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验