Suppr超能文献

由上肢运动学驱动的肌肉活动生成的概念。

The concepts of muscle activity generation driven by upper limb kinematics.

机构信息

Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum, Bochum, Germany.

Institute of Computer Science, University of Applied Science Ruhr West, Mülheim an der Ruhr, Germany.

出版信息

Biomed Eng Online. 2023 Jun 24;22(1):63. doi: 10.1186/s12938-023-01116-9.

Abstract

BACKGROUND

The underlying motivation of this work is to demonstrate that artificial muscle activity of known and unknown motion can be generated based on motion parameters, such as angular position, acceleration, and velocity of each joint (or the end-effector instead), which are similarly represented in our brains. This model is motivated by the known motion planning process in the central nervous system. That process incorporates the current body state from sensory systems and previous experiences, which might be represented as pre-learned inverse dynamics that generate associated muscle activity.

METHODS

We develop a novel approach utilizing recurrent neural networks that are able to predict muscle activity of the upper limbs associated with complex 3D human arm motions. Therefore, motion parameters such as joint angle, velocity, acceleration, hand position, and orientation, serve as input for the models. In addition, these models are trained on multiple subjects (n=5 including , 3 male in the age of 26±2 years) and thus can generalize across individuals. In particular, we distinguish between a general model that has been trained on several subjects, a subject-specific model, and a specific fine-tuned model using a transfer learning approach to adapt the model to a new subject. Estimators such as mean square error MSE, correlation coefficient r, and coefficient of determination R are used to evaluate the goodness of fit. We additionally assess performance by developing a new score called the zero-line score. The present approach was compared with multiple other architectures.

RESULTS

The presented approach predicts the muscle activity for previously through different subjects with remarkable high precision and generalizing nicely for new motions that have not been trained before. In an exhausting comparison, our recurrent network outperformed all other architectures. In addition, the high inter-subject variation of the recorded muscle activity was successfully handled using a transfer learning approach, resulting in a good fit for the muscle activity for a new subject.

CONCLUSIONS

The ability of this approach to efficiently predict muscle activity contributes to the fundamental understanding of motion control. Furthermore, this approach has great potential for use in rehabilitation contexts, both as a therapeutic approach and as an assistive device. The predicted muscle activity can be utilized to guide functional electrical stimulation, allowing specific muscles to be targeted and potentially improving overall rehabilitation outcomes.

摘要

背景

本工作的基本动机是展示可以基于运动参数(例如每个关节(或末端执行器)的角位置、加速度和速度)生成已知和未知运动的人工肌肉活动,这些参数在我们的大脑中也有类似的表示。这个模型是受中枢神经系统中已知运动规划过程的启发。该过程将来自感觉系统的当前身体状态和以前的经验结合起来,这些经验可能表现为预先学习的逆动力学,从而产生相关的肌肉活动。

方法

我们开发了一种利用能够预测与复杂 3D 人体手臂运动相关的上肢肌肉活动的递归神经网络的新方法。因此,运动参数(如关节角度、速度、加速度、手的位置和方向)作为模型的输入。此外,这些模型是在多个受试者(n=5,包括 3 名年龄为 26±2 岁的男性)上进行训练的,因此可以在个体之间进行推广。特别地,我们区分了已在多个受试者身上训练过的通用模型、特定于受试者的模型和使用迁移学习方法来适应模型的特定微调模型。使用均方误差 MSE、相关系数 r 和确定系数 R 等估计器来评估拟合度。我们还通过开发称为零线得分的新分数来评估性能。本方法与其他多种架构进行了比较。

结果

所提出的方法可以以前通过不同受试者的方式预测肌肉活动,具有很高的精度,并很好地推广到以前未训练过的新运动。在一项令人筋疲力尽的比较中,我们的递归网络优于所有其他架构。此外,使用迁移学习方法成功处理了记录的肌肉活动的高受试者间变异性,从而为新受试者的肌肉活动拟合良好。

结论

这种方法能够有效地预测肌肉活动,有助于对运动控制的基本理解。此外,该方法在康复环境中具有很大的应用潜力,既可以作为治疗方法,也可以作为辅助设备。预测的肌肉活动可用于指导功能性电刺激,从而可以针对特定肌肉,并有可能提高整体康复效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7781/10290331/85b5a733694f/12938_2023_1116_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验