Nobécourt E, Zeng J, Davies M J, Brown B E, Yadav S, Barter P J, Rye K-A
Lipid Research Group, The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, NSW 2050, Australia.
Diabetologia. 2008 Jun;51(6):1008-17. doi: 10.1007/s00125-008-0986-z. Epub 2008 Apr 24.
AIMS/HYPOTHESIS: Hyperglycaemia, a key feature of diabetes, is associated with non-enzymatic glycation of plasma proteins. We have shown previously that the reactive alpha-oxoaldehyde, methylglyoxal, non-enzymatically glycates apolipoprotein (Apo)A-I, the main apolipoprotein of HDL, and prevents it from activating lecithin:cholesterol acyltransferase (LCAT), the enzyme that generates almost all of the cholesteryl esters in plasma. This study investigates whether the glycation inhibitors aminoguanidine and pyridoxamine, the insulin sensitiser metformin and the cross-link breaker alagebrium can inhibit and/or reverse the methylglyoxal-mediated glycation of ApoA-I and whether these changes can preserve or restore the ability of ApoA-I to activate LCAT.
Inhibition of ApoA-I glycation was assessed by incubating aminoguanidine, pyridoxamine, metformin and alagebrium with mixtures of methylglyoxal and discoidal reconstituted HDL (rHDL) containing phosphatidylcholine and ApoA-I, ([A-I]rHDL). Glycation was assessed as the modification of ApoA-I arginine, lysine and tryptophan residues, and by the extent of ApoA-I cross-linking. The reversal of ApoA-I glycation was investigated by pre-incubating discoidal (A-I)rHDL with methylglyoxal, then incubating the modified rHDL with aminoguanidine, pyridoxamine or alagebrium.
Aminoguanidine, pyridoxamine, metformin and alagebrium all decreased the methylglyoxal-mediated glycation of the ApoA-I in discoidal rHDL and conserved the ability of the particles to act as substrates for LCAT. However, neither aminoguanidine, pyridoxamine nor alagebrium could reverse the glycation of ApoA-I or restore its ability to activate LCAT.
CONCLUSIONS/INTERPRETATION: Glycation inhibitors, insulin sensitisers and cross-link breakers are important for preserving normal HDL function in diabetes.
目的/假设:高血糖是糖尿病的一个关键特征,与血浆蛋白的非酶糖基化有关。我们之前已经表明,活性α-氧代醛甲基乙二醛可对高密度脂蛋白(HDL)的主要载脂蛋白载脂蛋白(Apo)A-I进行非酶糖基化,并阻止其激活卵磷脂胆固醇酰基转移酶(LCAT),该酶可生成血浆中几乎所有的胆固醇酯。本研究调查了糖基化抑制剂氨基胍和吡哆胺、胰岛素增敏剂二甲双胍以及交联破坏剂阿雷吉明是否能够抑制和/或逆转甲基乙二醛介导的ApoA-I糖基化,以及这些变化是否能够保持或恢复ApoA-I激活LCAT的能力。
通过将氨基胍、吡哆胺、二甲双胍和阿雷吉明与甲基乙二醛以及含有磷脂酰胆碱和ApoA-I的盘状重组HDL(rHDL)混合物([A-I]rHDL)一起孵育,评估对ApoA-I糖基化的抑制作用。糖基化通过ApoA-I精氨酸、赖氨酸和色氨酸残基的修饰以及ApoA-I交联程度来评估。通过将盘状(A-I)rHDL与甲基乙二醛预孵育,然后将修饰后的rHDL与氨基胍、吡哆胺或阿雷吉明孵育,研究ApoA-I糖基化的逆转情况。
氨基胍、吡哆胺、二甲双胍和阿雷吉明均降低了盘状rHDL中甲基乙二醛介导的ApoA-I糖基化,并保留了颗粒作为LCAT底物的能力。然而,氨基胍、吡哆胺和阿雷吉明均不能逆转ApoA-I的糖基化或恢复其激活LCAT的能力。
结论/解读:糖基化抑制剂、胰岛素增敏剂和交联破坏剂对于维持糖尿病患者正常的HDL功能很重要。