Suppr超能文献

预测美国 COVID-19 大流行早期阶段的专家判断模型。

An expert judgment model to predict early stages of the COVID-19 pandemic in the United States.

机构信息

Department of Community and Population Health, College of Health, Lehigh University, Bethlehem, Pennsylvania, United States of America.

Department of Biostatistics and Epidemiology, University of Massachusetts Amherst School of Public Health and Health Sciences, Amherst, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2022 Sep 23;18(9):e1010485. doi: 10.1371/journal.pcbi.1010485. eCollection 2022 Sep.

Abstract

From February to May 2020, experts in the modeling of infectious disease provided quantitative predictions and estimates of trends in the emerging COVID-19 pandemic in a series of 13 surveys. Data on existing transmission patterns were sparse when the pandemic began, but experts synthesized information available to them to provide quantitative, judgment-based assessments of the current and future state of the pandemic. We aggregated expert predictions into a single "linear pool" by taking an equally weighted average of their probabilistic statements. At a time when few computational models made public estimates or predictions about the pandemic, expert judgment provided (a) falsifiable predictions of short- and long-term pandemic outcomes related to reported COVID-19 cases, hospitalizations, and deaths, (b) estimates of latent viral transmission, and (c) counterfactual assessments of pandemic trajectories under different scenarios. The linear pool approach of aggregating expert predictions provided more consistently accurate predictions than any individual expert, although the predictive accuracy of a linear pool rarely provided the most accurate prediction. This work highlights the importance that an expert linear pool could play in flexibly assessing a wide array of risks early in future emerging outbreaks, especially in settings where available data cannot yet support data-driven computational modeling.

摘要

从 2020 年 2 月至 5 月,传染病建模专家在 13 次调查中对新出现的 COVID-19 大流行的趋势提供了定量预测和估计。大流行开始时,现有传播模式的数据很少,但专家综合了他们掌握的信息,对大流行的现状和未来进行了定量的、基于判断的评估。我们通过对他们的概率陈述进行等权重平均,将专家预测汇总到一个单一的“线性汇总”中。在很少有计算模型对大流行做出公开估计或预测的时候,专家判断提供了(a)与报告的 COVID-19 病例、住院和死亡有关的短期和长期大流行结果的可证伪预测,(b)对潜在病毒传播的估计,以及(c)不同情景下大流行轨迹的反事实评估。尽管线性汇总方法的预测准确性很少提供最准确的预测,但它比任何单个专家的预测都更准确。这项工作强调了专家线性汇总在灵活评估未来新发疫情中广泛风险方面的重要性,尤其是在现有数据尚不能支持数据驱动的计算建模的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92a0/9534428/d0f819b44297/pcbi.1010485.g001.jpg

相似文献

1
An expert judgment model to predict early stages of the COVID-19 pandemic in the United States.
PLoS Comput Biol. 2022 Sep 23;18(9):e1010485. doi: 10.1371/journal.pcbi.1010485. eCollection 2022 Sep.
2
Aggregating human judgment probabilistic predictions of the safety, efficacy, and timing of a COVID-19 vaccine.
Vaccine. 2022 Apr 1;40(15):2331-2341. doi: 10.1016/j.vaccine.2022.02.054. Epub 2022 Feb 28.
3
An expert judgment model to predict early stages of the COVID-19 outbreak in the United States.
medRxiv. 2020 Sep 23:2020.09.21.20196725. doi: 10.1101/2020.09.21.20196725.
4
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2113561119. doi: 10.1073/pnas.2113561119. Epub 2022 Apr 8.
5
Assessing the utility of COVID-19 case reports as a leading indicator for hospitalization forecasting in the United States.
Epidemics. 2023 Dec;45:100728. doi: 10.1016/j.epidem.2023.100728. Epub 2023 Nov 7.
6
How well did experts and laypeople forecast the size of the COVID-19 pandemic?
PLoS One. 2021 May 5;16(5):e0250935. doi: 10.1371/journal.pone.0250935. eCollection 2021.
8
Chimeric forecasting: combining probabilistic predictions from computational models and human judgment.
BMC Infect Dis. 2022 Nov 10;22(1):833. doi: 10.1186/s12879-022-07794-5.
9
Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model.
PLoS Comput Biol. 2021 Mar 29;17(3):e1008837. doi: 10.1371/journal.pcbi.1008837. eCollection 2021 Mar.

引用本文的文献

1
Human judgement forecasting of COVID-19 in the UK.
Wellcome Open Res. 2024 Mar 21;8:416. doi: 10.12688/wellcomeopenres.19380.2. eCollection 2023.
3
Unraveling the COVID-19 hospitalization dynamics in Spain using Bayesian inference.
BMC Med Res Methodol. 2023 Jan 25;23(1):24. doi: 10.1186/s12874-023-01842-7.
4
Chimeric forecasting: combining probabilistic predictions from computational models and human judgment.
BMC Infect Dis. 2022 Nov 10;22(1):833. doi: 10.1186/s12879-022-07794-5.
6
Comparing human and model-based forecasts of COVID-19 in Germany and Poland.
PLoS Comput Biol. 2022 Sep 19;18(9):e1010405. doi: 10.1371/journal.pcbi.1010405. eCollection 2022 Sep.
7
Early human judgment forecasts of human monkeypox, May 2022.
Lancet Digit Health. 2022 Aug;4(8):e569-e571. doi: 10.1016/S2589-7500(22)00127-3. Epub 2022 Jul 7.
9
Aggregating human judgment probabilistic predictions of the safety, efficacy, and timing of a COVID-19 vaccine.
Vaccine. 2022 Apr 1;40(15):2331-2341. doi: 10.1016/j.vaccine.2022.02.054. Epub 2022 Feb 28.
10
Challenges in estimation, uncertainty quantification and elicitation for pandemic modelling.
Epidemics. 2022 Mar;38:100547. doi: 10.1016/j.epidem.2022.100547. Epub 2022 Feb 10.

本文引用的文献

2
How well did experts and laypeople forecast the size of the COVID-19 pandemic?
PLoS One. 2021 May 5;16(5):e0250935. doi: 10.1371/journal.pone.0250935. eCollection 2021.
3
A scenario modeling pipeline for COVID-19 emergency planning.
Sci Rep. 2021 Apr 6;11(1):7534. doi: 10.1038/s41598-021-86811-0.
4
Aggregating predictions from experts: a review of statistical methods, experiments, and applications.
Wiley Interdiscip Rev Comput Stat. 2021 Mar-Apr;13(2). doi: 10.1002/wics.1514. Epub 2020 Jun 16.
5
Estimating unobserved SARS-CoV-2 infections in the United States.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22597-22602. doi: 10.1073/pnas.2005476117. Epub 2020 Aug 21.
6
Crowdsourcing drug discovery for pandemics.
Nat Chem. 2020 Jul;12(7):581. doi: 10.1038/s41557-020-0496-2.
7
Harnessing multiple models for outbreak management.
Science. 2020 May 8;368(6491):577-579. doi: 10.1126/science.abb9934.
8
Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study.
Lancet Digit Health. 2020 Apr;2(4):e201-e208. doi: 10.1016/S2589-7500(20)30026-1. Epub 2020 Feb 20.
10
Forecasting the novel coronavirus COVID-19.
PLoS One. 2020 Mar 31;15(3):e0231236. doi: 10.1371/journal.pone.0231236. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验