Suppr超能文献

数字放射摄影拒收分析:两家医院深入调查的数据收集方法、结果及建议

Digital radiography reject analysis: data collection methodology, results, and recommendations from an in-depth investigation at two hospitals.

作者信息

Foos David H, Sehnert W James, Reiner Bruce, Siegel Eliot L, Segal Arthur, Waldman David L

机构信息

Clinical Applications Research Laboratory, Carestream Health Inc., 1049 Ridge Road W., Rochester, NY 14615, USA.

出版信息

J Digit Imaging. 2009 Mar;22(1):89-98. doi: 10.1007/s10278-008-9112-5. Epub 2008 Apr 30.

Abstract

Reject analysis was performed on 288,000 computed radiography (CR) image records collected from a university hospital (UH) and a large community hospital (CH). Each record contains image information, such as body part and view position, exposure level, technologist identifier, and--if the image was rejected--the reason for rejection. Extensive database filtering was required to ensure the integrity of the reject-rate calculations. The reject rate for CR across all departments and across all exam types was 4.4% at UH and 4.9% at CH. The most frequently occurring exam types with reject rates of 8% or greater were found to be common to both institutions (skull/facial bones, shoulder, hip, spines, in-department chest, pelvis). Positioning errors and anatomy cutoff were the most frequently occurring reasons for rejection, accounting for 45% of rejects at CH and 56% at UH. Improper exposure was the next most frequently occurring reject reason (14% of rejects at CH and 13% at UH), followed by patient motion (11% of rejects at CH and 7% at UH). Chest exams were the most frequently performed exam at both institutions (26% at UH and 45% at CH) with half captured in-department and half captured using portable x-ray equipment. A ninefold greater reject rate was found for in-department (9%) versus portable chest exams (1%). Problems identified with the integrity of the data used for reject analysis can be mitigated in the future by objectifying quality assurance (QA) procedures and by standardizing the nomenclature and definitions for QA deficiencies.

摘要

对从一家大学医院(UH)和一家大型社区医院(CH)收集的288,000份计算机X线摄影(CR)图像记录进行了拒收分析。每份记录都包含图像信息,如身体部位和视图位置、曝光水平、技术人员标识符,以及——如果图像被拒收——拒收原因。需要进行广泛的数据库筛选以确保拒收率计算的完整性。UH所有科室和所有检查类型的CR拒收率为4.4%,CH为4.9%。发现拒收率达到或超过8%的最常见检查类型在两个机构中都有(颅骨/面部骨骼、肩部、髋部、脊柱、科室内部胸部、骨盆)。定位错误和解剖结构截断是最常见的拒收原因,在CH占拒收的45%,在UH占56%。曝光不当是其次最常见的拒收原因(在CH占拒收的14%,在UH占13%),其次是患者移动(在CH占拒收的11%,在UH占7%)。胸部检查是两个机构中最常进行的检查(在UH占26%,在CH占45%),其中一半在科室内部拍摄,一半使用便携式X射线设备拍摄。发现科室内部胸部检查的拒收率(9%)是便携式胸部检查(1%)的九倍。通过客观化质量保证(QA)程序以及标准化QA缺陷的命名和定义,未来可以减轻与用于拒收分析的数据完整性相关的问题。

相似文献

2
Reject analysis in direct digital radiography.
Acta Radiol. 2012 Mar 1;53(2):174-8. doi: 10.1258/ar.2011.110350. Epub 2012 Jan 27.
3
Reject rate analysis in digital radiography: an Australian emergency imaging department case study.
J Med Radiat Sci. 2020 Mar;67(1):72-79. doi: 10.1002/jmrs.343. Epub 2019 Jul 18.
4
Digital radiography reject analysis: A comparison between two radiology departments in New Zealand.
J Med Radiat Sci. 2023 Jun;70(2):137-144. doi: 10.1002/jmrs.654. Epub 2023 Jan 19.
7
Films reject analysis for conventional radiography in Iranian main hospitals.
Radiat Prot Dosimetry. 2011 Sep;147(1-2):220-2. doi: 10.1093/rpd/ncr306. Epub 2011 Jul 14.

引用本文的文献

2
Deep Learning-Based Estimation of Radiographic Position to Automatically Set Up the X-Ray Prime Factors.
J Imaging Inform Med. 2025 Jun;38(3):1661-1668. doi: 10.1007/s10278-024-01256-x. Epub 2024 Oct 14.
3
ACPSEM position paper: recommendations for a digital general X-ray quality assurance program.
Phys Eng Sci Med. 2024 Sep;47(3):789-812. doi: 10.1007/s13246-024-01431-y. Epub 2024 Aug 12.
4
AAPM task group report 305: Guidance for standardization of vendor-neutral reject analysis in radiography.
J Appl Clin Med Phys. 2023 May;24(5):e13938. doi: 10.1002/acm2.13938. Epub 2023 Mar 30.
5
Suboptimal Chest Radiography and Artificial Intelligence: The Problem and the Solution.
Diagnostics (Basel). 2023 Jan 23;13(3):412. doi: 10.3390/diagnostics13030412.
6
Digital radiography reject analysis: A comparison between two radiology departments in New Zealand.
J Med Radiat Sci. 2023 Jun;70(2):137-144. doi: 10.1002/jmrs.654. Epub 2023 Jan 19.
7
Visualizing the Invisible: Invisible Waste in Diagnostic Imaging.
Healthcare (Basel). 2021 Dec 7;9(12):1693. doi: 10.3390/healthcare9121693.
10
Geometric validation of a computer simulator used in radiography education.
BJR Open. 2020 Feb 3;2(1):20190027. doi: 10.1259/bjro.20190027. eCollection 2020.

本文引用的文献

1
Digital repeat analysis; setup and operation.
J Digit Imaging. 2006 Jun;19(2):159-66. doi: 10.1007/s10278-005-8733-1.
2
Is reject analysis necessary after converting to computed radiography?
J Digit Imaging. 2002;15 Suppl 1:41-52. doi: 10.1007/s10278-002-5028-7. Epub 2002 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验