Suppr超能文献

基于深度学习的X线摄影位置估计以自动设置X线主要参数

Deep Learning-Based Estimation of Radiographic Position to Automatically Set Up the X-Ray Prime Factors.

作者信息

Del Cerro C F, Giménez R C, García-Blas J, Sosenko K, Ortega J M, Desco M, Abella M

机构信息

Dept. Bioingeniería, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.

Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.

出版信息

J Imaging Inform Med. 2025 Jun;38(3):1661-1668. doi: 10.1007/s10278-024-01256-x. Epub 2024 Oct 14.

Abstract

Radiation dose and image quality in radiology are influenced by the X-ray prime factors: KVp, mAs, and source-detector distance. These parameters are set by the X-ray technician prior to the acquisition considering the radiographic position. A wrong setting of these parameters may result in exposure errors, forcing the test to be repeated with the increase of the radiation dose delivered to the patient. This work presents a novel approach based on deep learning that automatically estimates the radiographic position from a photograph captured prior to X-ray exposure, which can then be used to select the optimal prime factors. We created a database using 66 radiographic positions commonly used in clinical settings, prospectively obtained during 2022 from 75 volunteers in two different X-ray facilities. The architecture for radiographic position classification was a lightweight version of ConvNeXt trained with fine-tuning, discriminative learning rates, and a one-cycle policy scheduler. Our resulting model achieved an accuracy of 93.17% for radiographic position classification and increased to 95.58% when considering the correct selection of prime factors, since half of the errors involved positions with the same KVp and mAs values. Most errors occurred for radiographic positions with similar patient pose in the photograph. Results suggest the feasibility of the method to facilitate the acquisition workflow reducing the occurrence of exposure errors while preventing unnecessary radiation dose delivered to patients.

摘要

放射学中的辐射剂量和图像质量受X射线主要因素影响:千伏峰值(KVp)、毫安秒(mAs)和源-探测器距离。在采集之前,X射线技术人员会根据放射摄影位置设置这些参数。这些参数设置错误可能导致曝光错误,从而迫使在增加对患者的辐射剂量的情况下重复检查。这项工作提出了一种基于深度学习的新方法,该方法可根据X射线曝光前拍摄的照片自动估计放射摄影位置,然后可用于选择最佳主要因素。我们使用临床环境中常用的66个放射摄影位置创建了一个数据库,这些位置是在2022年期间前瞻性地从两个不同X射线设施的75名志愿者那里获得的。用于放射摄影位置分类的架构是经过微调、采用判别式学习率和单周期策略调度器训练的ConvNeXt轻量级版本。我们得到的模型在放射摄影位置分类方面的准确率达到了93.17%,在考虑正确选择主要因素时提高到了95.58%,因为一半的错误涉及具有相同KVp和mAs值的位置。大多数错误发生在照片中患者姿势相似的放射摄影位置上。结果表明该方法有助于简化采集流程,减少曝光错误的发生,同时防止对患者造成不必要的辐射剂量,具有可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d6/12092909/cf5d5e77c739/10278_2024_1256_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验