Suppr超能文献

基于原子类型的人乙醚相关基因(hERG) liabilities 的支持向量机分类

Support vector machines classification of hERG liabilities based on atom types.

作者信息

Jia Lei, Sun Hongmao

机构信息

Department of Discovery Chemistry, Hoffmann-La Roche, Nutley, NJ 07110, USA.

出版信息

Bioorg Med Chem. 2008 Jun 1;16(11):6252-60. doi: 10.1016/j.bmc.2008.04.028. Epub 2008 Apr 16.

Abstract

Drug-induced long QT syndrome (LQTS) can cause critical cardiovascular side effects and has accounted for the withdrawal of several drugs from the market. Blockade of the potassium ion channel encoded by the human ether-a-go-go-related gene (hERG) has been identified as a major contributor to drug-induced LQTS. Experimental measurement of hERG activity for each compound in development is costly and time-consuming, thus it is beneficial to develop a predictive hERG model. Here, we present a hERG classification model formulated using support vector machines (SVM) as machine learning method and using atom types as molecular descriptors. The training set used in this study was composed of 977 corporate compounds with hERG activities measured under the same conditions. The impact of soft margin and kernel function on the performance of the SVM models was examined. The robustness of SVM was evaluated by comparing the predictive power of the models built with 90%, 50%, and 10% of the training set data. The final SVM model was able to correctly classify 94% of an external testing set containing 66 drug molecules. The most important atom types with respect to discriminative power were extracted and analyzed.

摘要

药物诱发的长QT综合征(LQTS)可导致严重的心血管副作用,已有数种药物因此而退市。人类醚-à-去相关基因(hERG)编码的钾离子通道阻滞已被确认为药物诱发LQTS的主要原因。对研发中的每种化合物进行hERG活性的实验测量成本高昂且耗时,因此开发一个预测性hERG模型很有必要。在此,我们提出一种hERG分类模型,该模型以支持向量机(SVM)作为机器学习方法,以原子类型作为分子描述符构建而成。本研究中使用的训练集由977种在相同条件下测量了hERG活性的公司化合物组成。研究了软间隔和核函数对SVM模型性能的影响。通过比较使用训练集数据的90%、50%和10%构建的模型的预测能力来评估SVM的稳健性。最终的SVM模型能够正确分类包含66种药物分子的外部测试集中94%的样本。提取并分析了具有鉴别力的最重要的原子类型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验