Suppr超能文献

哺乳动物硫代谢中平行途径间转换的变构机制。

An allosteric mechanism for switching between parallel tracks in mammalian sulfur metabolism.

作者信息

Korendyaseva Tatyana K, Kuvatov Denis N, Volkov Vladimir A, Martinov Michael V, Vitvitsky Victor M, Banerjee Ruma, Ataullakhanov Fazoil I

机构信息

National Research Center for Hematology, RAMS, Moscow, Russia.

出版信息

PLoS Comput Biol. 2008 May 2;4(5):e1000076. doi: 10.1371/journal.pcbi.1000076.

Abstract

Methionine (Met) is an essential amino acid that is needed for the synthesis of S-adenosylmethionine (AdoMet), the major biological methylating agent. Methionine used for AdoMet synthesis can be replenished via remethylation of homocysteine. Alternatively, homocysteine can be converted to cysteine via the transsulfuration pathway. Aberrations in methionine metabolism are associated with a number of complex diseases, including cancer, anemia, and neurodegenerative diseases. The concentration of methionine in blood and in organs is tightly regulated. Liver plays a key role in buffering blood methionine levels, and an interesting feature of its metabolism is that parallel tracks exist for the synthesis and utilization of AdoMet. To elucidate the molecular mechanism that controls metabolic fluxes in liver methionine metabolism, we have studied the dependencies of AdoMet concentration and methionine consumption rate on methionine concentration in native murine hepatocytes at physiologically relevant concentrations (40-400 microM). We find that both [AdoMet] and methionine consumption rates do not change gradually with an increase in [Met] but rise sharply (approximately 10-fold) in the narrow Met interval from 50 to 100 microM. Analysis of our experimental data using a mathematical model reveals that the sharp increase in [AdoMet] and the methionine consumption rate observed within the trigger zone are associated with metabolic switching from methionine conservation to disposal, regulated allosterically by switching between parallel pathways. This regulatory switch is triggered by [Met] and provides a mechanism for stabilization of methionine levels in blood over wide variations in dietary methionine intake.

摘要

甲硫氨酸(Met)是一种必需氨基酸,是合成主要生物甲基化剂S-腺苷甲硫氨酸(AdoMet)所必需的。用于AdoMet合成的甲硫氨酸可通过同型半胱氨酸的再甲基化来补充。另外,同型半胱氨酸可通过转硫途径转化为半胱氨酸。甲硫氨酸代谢异常与许多复杂疾病有关,包括癌症、贫血和神经退行性疾病。血液和器官中甲硫氨酸的浓度受到严格调节。肝脏在缓冲血液中甲硫氨酸水平方面起关键作用,其代谢的一个有趣特征是AdoMet的合成和利用存在平行途径。为了阐明控制肝脏甲硫氨酸代谢中代谢通量的分子机制,我们研究了在生理相关浓度(40 - 400微摩尔)下,天然小鼠肝细胞中AdoMet浓度和甲硫氨酸消耗率对甲硫氨酸浓度的依赖性。我们发现,[AdoMet]和甲硫氨酸消耗率都不会随着[Met]的增加而逐渐变化,而是在50至100微摩尔的狭窄甲硫氨酸区间内急剧上升(约10倍)。使用数学模型对我们的实验数据进行分析表明,在触发区内观察到的[AdoMet]和甲硫氨酸消耗率的急剧增加与从甲硫氨酸保留到处置的代谢转换有关,这种转换通过平行途径之间的切换进行变构调节。这种调节性切换由[Met]触发,并为在饮食中甲硫氨酸摄入量广泛变化的情况下稳定血液中甲硫氨酸水平提供了一种机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c0/2346559/f9bdc6e9b2e1/pcbi.1000076.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验