Peitersen Torben, Grunnet Morten, Benson Alan P, Holden Arun V, Holstein-Rathlou Niels-Henrik, Olesen Søren-Peter
Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark.
Heart Rhythm. 2008 May;5(5):734-41. doi: 10.1016/j.hrthm.2008.02.026. Epub 2008 Mar 4.
Dysfunction or pharmacologic inhibition of repolarizing cardiac ionic currents can lead to fatal arrhythmias. The hERG potassium channel underlies the repolarizing current I(Kr), and mutations therein can produce both long and short QT syndromes (LQT2 and SQT1). We previously reported on the diphenylurea compound NS1643, which acts on hERG channels in two distinct ways: by increasing overall conductance and by shifting the inactivation curve in the depolarized direction.
The purpose of this study was to determine which of the two components contributes more to the antiarrhythmic effects of NS1643 under normokalemic and hypokalemic conditions.
The study consisted of mathematical simulation of action potentials in a human ventricular ionic cell model in single cell and string of 100 cells.
Regardless of external potassium concentration or diastolic interval used, NS1643 decreases action potential duration and triangulation. For single cells, NS1643 increases the postrepolarization refractory time but shortens the absolute refractory period. In one dimensional simulations, NS1643 increases the vulnerable window for unidirectional block but suppresses the emergence of premature action potentials and unidirectional blocks around APD(90). During normokalemia, shifting the inactivation curve has greater impact than increasing conductance, whereas the opposite occurs during hypokalemia.
Increased hERG conductance and the depolarizing shift of the inactivation curve both contribute to the antiarrhythmic actions of NS1643, with relative effects dependent on external K(+) concentration.
心脏复极离子电流的功能障碍或药物抑制可导致致命性心律失常。人乙醚相关基因(hERG)钾通道是复极电流I(Kr)的基础,其中的突变可产生长QT综合征和短QT综合征(LQT2和SQT1)。我们之前报道了二苯基脲化合物NS1643,它以两种不同方式作用于hERG通道:增加总体电导率以及使失活曲线向去极化方向移动。
本研究的目的是确定在正常血钾和低钾血症条件下,这两种成分中哪一种对NS1643的抗心律失常作用贡献更大。
该研究包括在单细胞和100个细胞串的人心室离子细胞模型中对动作电位进行数学模拟。
无论使用的外部钾浓度或舒张间期如何,NS1643均可缩短动作电位时程和三角化。对于单细胞,NS1643可增加复极后不应期,但缩短绝对不应期。在一维模拟中,NS1643增加了单向阻滞的易损窗口,但抑制了过早动作电位的出现以及围绕动作电位时程90%(APD(90))的单向阻滞。在正常血钾期间,使失活曲线移动比增加电导率的影响更大,而在低钾血症期间则相反。
hERG电导率增加和失活曲线的去极化移位均有助于NS1643的抗心律失常作用,相对作用取决于外部钾(K(+))浓度。