Institute of Membrane & Systems Biology, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, UK.
Eur Biophys J. 2011 May;40(5):627-39. doi: 10.1007/s00249-010-0663-2. Epub 2011 Jan 14.
Mutations to hERG which result in changes to the rapid delayed rectifier current I(Kr) can cause long and short QT syndromes and are associated with an increased risk of cardiac arrhythmias. Experimental recordings of I(Kr) reveal the effects of mutations at the channel level, but how these changes translate to the cell and tissue levels remains unclear. We used computational models of human ventricular myocytes and tissues to predict and quantify the effects that de novo hERG mutations would have on cell and tissue electrophysiology. Mutations that decreased I(Kr) maximum conductance resulted in an increased cell and tissue action potential duration (APD) and a long QT interval on the electrocardiogram (ECG), whereas those that caused a positive shift in the inactivation curve resulted in a decreased APD and a short QT. Tissue vulnerability to re-entrant arrhythmias was correlated with transmural dispersion of repolarisation, and any change to this vulnerability could be inferred from the ECG QT interval or T wave peak-to-end time. Faster I(Kr) activation kinetics caused cell APD alternans to appear over a wider range of pacing rates and with a larger magnitude, and spatial heterogeneity in these cellular alternans resulted in discordant alternans at the tissue level. Thus, from channel kinetic data, we can predict the tissue-level electrophysiological effects of any hERG mutations and identify how the mutation would manifest clinically, as either a long or short QT syndrome with or without an increased risk of alternans and re-entrant arrhythmias.
导致快速延迟整流电流 I(Kr)变化的 hERG 突变可引起长 QT 综合征和短 QT 综合征,并与心律失常风险增加相关。I(Kr)的实验记录揭示了通道水平突变的影响,但这些变化如何转化为细胞和组织水平仍不清楚。我们使用人类心室肌细胞和组织的计算模型来预测和量化新出现的 hERG 突变对细胞和组织电生理学的影响。降低 I(Kr)最大电导的突变导致细胞和组织动作电位时程 (APD)延长和心电图 (ECG)上 QT 间期延长,而导致失活曲线正移的突变则导致 APD 缩短和 QT 间期缩短。组织对折返性心律失常的易感性与复极离散度相关,任何对这种易感性的改变都可以从 ECG QT 间期或 T 波峰末时间推断出来。更快的 I(Kr)激活动力学导致细胞 APD 交替在更宽的起搏频率范围内出现,幅度更大,这些细胞交替的空间异质性导致组织水平上的不一致交替。因此,从通道动力学数据,我们可以预测任何 hERG 突变的组织水平电生理效应,并确定突变将如何表现为临床长 QT 或短 QT 综合征,伴有或不伴有交替和折返性心律失常的风险增加。