Suppr超能文献

克雷伯氏菌属bc(1)复合物的二聚体结构可防止中心P因中心N处的逆向反应而受到抑制。

The dimeric structure of the cytochrome bc(1) complex prevents center P inhibition by reverse reactions at center N.

作者信息

Covian Raul, Trumpower Bernard L

机构信息

Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755, USA.

出版信息

Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):1044-52. doi: 10.1016/j.bbabio.2008.04.008. Epub 2008 Apr 11.

Abstract

Energy transduction in the cytochrome bc(1) complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c(1) reduction at varying quinol/quinone ratios in the isolated yeast bc(1) complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the b(H) heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c(1) reduction indicated that the b(H) hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred. The extent of this initial cytochrome b reduction corresponded to a level of b(H) heme reduction of 33%-55% depending on the quinol/quinone ratio. The extent of initial cytochrome c(1) reduction remained constant as long as the fast electron equilibration through center N reduced no more than 50% of the b(H) hemes. Using kinetic modeling, the resilience of center P catalysis to inhibition caused by partial pre-reduction of the b(H) hemes was explained using kinetics in terms of the dimeric structure of the bc(1) complex which allows electrons to equilibrate between monomers.

摘要

细胞色素bc(1)复合物中的能量转导是通过在两个不同的醌结合位点催化相反的氧化还原反应来实现的。我们测定了在分离的酵母bc(1)复合物中,不同醌醇/醌比例下细胞色素b和c(1)还原的预稳态动力学,以研究通过中心N还原b(H)血红素从而将中心P处醌醇氧化抑制降至最低的机制。相对于细胞色素c(1)还原,细胞色素b初始还原速率更快,且对醌浓度的敏感性更低,这表明在中心P发生显著催化作用之前,b(H)血红素通过中心N与醌池达到平衡。根据醌醇/醌比例,这种细胞色素b初始还原的程度对应于b(H)血红素还原水平为33%-55%。只要通过中心N的快速电子平衡使不超过50%的b(H)血红素还原,细胞色素c(1)初始还原的程度就保持恒定。使用动力学模型,根据bc(1)复合物的二聚体结构动力学解释了中心P催化对b(H)血红素部分预还原所引起抑制的恢复能力,该结构允许电子在单体之间达到平衡。

相似文献

1
The dimeric structure of the cytochrome bc(1) complex prevents center P inhibition by reverse reactions at center N.
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):1044-52. doi: 10.1016/j.bbabio.2008.04.008. Epub 2008 Apr 11.
2
Rapid electron transfer between monomers when the cytochrome bc1 complex dimer is reduced through center N.
J Biol Chem. 2005 Jun 17;280(24):22732-40. doi: 10.1074/jbc.M413592200. Epub 2005 Apr 15.
3
Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin.
Biochim Biophys Acta. 2008 Sep;1777(9):1079-91. doi: 10.1016/j.bbabio.2008.04.022. Epub 2008 Apr 22.
4
Mutations in cytochrome b that affect kinetics of the electron transfer reactions at center N in the yeast cytochrome bc1 complex.
Biochim Biophys Acta. 2008 Mar;1777(3):239-49. doi: 10.1016/j.bbabio.2007.08.005. Epub 2007 Sep 6.
6
Anti-cooperative oxidation of ubiquinol by the yeast cytochrome bc1 complex.
J Biol Chem. 2004 Apr 9;279(15):15040-9. doi: 10.1074/jbc.M400193200. Epub 2004 Feb 3.
8
Electron sweep across four b-hemes of cytochrome bc revealed by unusual paramagnetic properties of the Q semiquinone intermediate.
Biochim Biophys Acta Bioenerg. 2018 Jun;1859(6):459-469. doi: 10.1016/j.bbabio.2018.03.010. Epub 2018 Mar 27.
9
Novel cyanide inhibition at cytochrome c1 of Rhodobacter capsulatus cytochrome bc1.
Biochim Biophys Acta. 2004 Apr 12;1655(1-3):71-6. doi: 10.1016/j.bbabio.2003.07.005.
10

引用本文的文献

2
Structure and function of the III-IV-cyt supercomplex.
Proc Natl Acad Sci U S A. 2023 Nov 14;120(46):e2307697120. doi: 10.1073/pnas.2307697120. Epub 2023 Nov 8.
4
Catalytic Reactions and Energy Conservation in the Cytochrome and Complexes of Energy-Transducing Membranes.
Chem Rev. 2021 Feb 24;121(4):2020-2108. doi: 10.1021/acs.chemrev.0c00712. Epub 2021 Jan 19.
5
Hypoxia-inducible gene domain 1 proteins in yeast mitochondria protect against proton leak through complex IV.
J Biol Chem. 2019 Nov 15;294(46):17669-17677. doi: 10.1074/jbc.RA119.010317. Epub 2019 Oct 7.
7
Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria.
Biochemistry. 2013 Apr 23;52(16):2793-809. doi: 10.1021/bi3015983. Epub 2013 Apr 11.
8
The Q cycle of cytochrome bc complexes: a structure perspective.
Biochim Biophys Acta. 2011 Jul;1807(7):788-802. doi: 10.1016/j.bbabio.2011.02.006. Epub 2011 Feb 23.

本文引用的文献

1
Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin.
Biochim Biophys Acta. 2008 Sep;1777(9):1079-91. doi: 10.1016/j.bbabio.2008.04.022. Epub 2008 Apr 22.
2
Mutations in cytochrome b that affect kinetics of the electron transfer reactions at center N in the yeast cytochrome bc1 complex.
Biochim Biophys Acta. 2008 Mar;1777(3):239-49. doi: 10.1016/j.bbabio.2007.08.005. Epub 2007 Sep 6.
3
Marcus treatment of endergonic reactions: a commentary.
Biochim Biophys Acta. 2007 Oct;1767(10):1228-32. doi: 10.1016/j.bbabio.2007.06.006. Epub 2007 Jul 6.
6
Proton translocation by the cytochrome bc1 complexes of phototrophic bacteria: introducing the activated Q-cycle.
Photochem Photobiol Sci. 2007 Jan;6(1):19-34. doi: 10.1039/b517522d. Epub 2006 Dec 7.
7
Mutational analysis of cytochrome b at the ubiquinol oxidation site of yeast complex III.
J Biol Chem. 2007 Feb 9;282(6):3977-88. doi: 10.1074/jbc.M606482200. Epub 2006 Dec 4.
8
Regulatory interactions between ubiquinol oxidation and ubiquinone reduction sites in the dimeric cytochrome bc1 complex.
J Biol Chem. 2006 Oct 13;281(41):30925-32. doi: 10.1074/jbc.M604694200. Epub 2006 Aug 14.
9
Electron tunneling chains of mitochondria.
Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1096-109. doi: 10.1016/j.bbabio.2006.04.015. Epub 2006 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验