Suppr超能文献

马库斯对吸能反应的处理:一篇评论。

Marcus treatment of endergonic reactions: a commentary.

作者信息

Crofts Antony R, Rose Stuart

机构信息

Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA.

出版信息

Biochim Biophys Acta. 2007 Oct;1767(10):1228-32. doi: 10.1016/j.bbabio.2007.06.006. Epub 2007 Jul 6.

Abstract

Two forms of the equation for expression of the rate constant for electron transfer through a Marcus-type treatment are discussed. In the first (exergonic) form, the Arrhenius exponential term was replaced by its classical Marcus term; in the second (endergonic) form, the forward rate constant was replaced by the reverse rate constant (the forward rate constant in the exergonic direction), which was expanded to an equivalent Marcus term and multiplied by the equilibrium constant. When the classical Marcus treatment was used, these two forms of the rate equation give identical curves relating the logarithm of the rate constant to the driving force. The Marcus term for the relation between activation free-energy, DeltaG#, reorganization energy, lambda, and driving force, DeltaG(o), derived from parabolas for the reactant and product states, was identical when starting from exergonic or endergonic parabolas. Moser and colleagues introduced a quantum mechanical correction factor to the Marcus term in order to fit experimental data. When the same correction factor was applied in the treatment for the endergonic direction by Page and colleagues, a different curve was obtained from that found with the exergonic form. We show that the difference resulted from an algebraic error in development of the endergonic equation.

摘要

讨论了通过马库斯(Marcus)型处理来表达电子转移速率常数的方程的两种形式。在第一种(放能)形式中,阿仑尼乌斯指数项被其经典马库斯项取代;在第二种(吸能)形式中,正向速率常数被逆向速率常数(放能方向的正向速率常数)取代,该逆向速率常数被扩展为等效的马库斯项并乘以平衡常数。当使用经典马库斯处理时,这两种形式的速率方程给出了将速率常数的对数与驱动力相关联的相同曲线。从反应物和产物状态的抛物线导出的活化自由能ΔG#、重组能λ和驱动力ΔG(o)之间关系的马库斯项,无论从放能抛物线还是吸能抛物线开始,都是相同的。莫泽(Moser)及其同事对马库斯项引入了一个量子力学校正因子,以拟合实验数据。当佩奇(Page)及其同事在吸能方向的处理中应用相同的校正因子时,得到的曲线与放能形式的曲线不同。我们表明,这种差异是由于吸能方程推导中的代数错误导致的。

相似文献

1
Marcus treatment of endergonic reactions: a commentary.
Biochim Biophys Acta. 2007 Oct;1767(10):1228-32. doi: 10.1016/j.bbabio.2007.06.006. Epub 2007 Jul 6.
2
Contribution Factors of the First Kind Calculated for the Marcus Electron-Transfer Rate and Their Applications.
J Phys Chem B. 2023 Oct 12;127(40):8509-8524. doi: 10.1021/acs.jpcb.3c03420. Epub 2023 Oct 2.
3
The Reactivity of Ambident Nucleophiles: Marcus Theory or Hard and Soft Acids and Bases Principle?
J Comput Chem. 2019 Dec 5;40(31):2761-2777. doi: 10.1002/jcc.26052. Epub 2019 Aug 19.
4
Bimolecular electron transfers that follow a Sandros-Boltzmann dependence on free energy.
J Am Chem Soc. 2011 Apr 6;133(13):4791-801. doi: 10.1021/ja104536j. Epub 2011 Mar 8.
5
Understanding hydrogen atom transfer: from bond strengths to Marcus theory.
Acc Chem Res. 2011 Jan 18;44(1):36-46. doi: 10.1021/ar100093z. Epub 2010 Oct 26.
10
An extension of the Marcus equation: the Marcus potential energy function.
J Mol Model. 2018 Mar 24;24(4):104. doi: 10.1007/s00894-018-3633-8.

引用本文的文献

1
Mechanistic insights into energy conservation by flavin-based electron bifurcation.
Nat Chem Biol. 2017 Jun;13(6):655-659. doi: 10.1038/nchembio.2348. Epub 2017 Apr 10.
2
The two last overviews by Colin Allen Wraight (1945-2014) on energy conversion in photosynthetic bacteria.
Photosynth Res. 2016 Feb;127(2):257-71. doi: 10.1007/s11120-015-0175-0. Epub 2015 Jul 28.
3
The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex.
Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1362-77. doi: 10.1016/j.bbabio.2013.01.009. Epub 2013 Feb 8.
4
Role of the -PEWY-glutamate in catalysis at the Q(o)-site of the Cyt bc(1) complex.
Biochim Biophys Acta. 2013 Mar;1827(3):365-86. doi: 10.1016/j.bbabio.2012.10.012. Epub 2012 Nov 1.
5
Inter-monomer electron transfer is too slow to compete with monomeric turnover in bc(1) complex.
Biochim Biophys Acta. 2012 Jul;1817(7):1053-62. doi: 10.1016/j.bbabio.2012.03.012. Epub 2012 Mar 17.
6
Guidelines for tunneling in enzymes.
Biochim Biophys Acta. 2010 Sep;1797(9):1573-86. doi: 10.1016/j.bbabio.2010.04.441. Epub 2010 May 10.
7
The Q-cycle reviewed: How well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex?
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):1001-19. doi: 10.1016/j.bbabio.2008.04.037. Epub 2008 May 1.
8
Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin.
Biochim Biophys Acta. 2008 Sep;1777(9):1079-91. doi: 10.1016/j.bbabio.2008.04.022. Epub 2008 Apr 22.
9
The dimeric structure of the cytochrome bc(1) complex prevents center P inhibition by reverse reactions at center N.
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):1044-52. doi: 10.1016/j.bbabio.2008.04.008. Epub 2008 Apr 11.
10
Heme-copper oxidases use tunneling pathways.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):403-4. doi: 10.1073/pnas.0711343105. Epub 2008 Jan 7.

本文引用的文献

1
Coupling coherence distinguishes structure sensitivity in protein electron transfer.
Science. 2007 Feb 2;315(5812):622-5. doi: 10.1126/science.1134862.
2
Proton translocation by the cytochrome bc1 complexes of phototrophic bacteria: introducing the activated Q-cycle.
Photochem Photobiol Sci. 2007 Jan;6(1):19-34. doi: 10.1039/b517522d. Epub 2006 Dec 7.
3
Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase.
Philos Trans R Soc Lond B Biol Sci. 2006 Aug 29;361(1472):1295-305. doi: 10.1098/rstb.2006.1868.
5
Electron tunneling chains of mitochondria.
Biochim Biophys Acta. 2006 Sep-Oct;1757(9-10):1096-109. doi: 10.1016/j.bbabio.2006.04.015. Epub 2006 May 5.
6
Proton pumping in the bc1 complex: a new gating mechanism that prevents short circuits.
Biochim Biophys Acta. 2006 Aug;1757(8):1019-34. doi: 10.1016/j.bbabio.2006.02.009. Epub 2006 Mar 15.
7
Electron transfer between biological molecules by thermally activated tunneling.
Proc Natl Acad Sci U S A. 1974 Sep;71(9):3640-4. doi: 10.1073/pnas.71.9.3640.
8
Conformationally averaged score functions for electronic propagation in proteins.
J Phys Chem B. 2006 Mar 23;110(11):5747-57. doi: 10.1021/jp052194g.
9
Proton-coupled electron transfer at the Qo-site of the bc1 complex controls the rate of ubihydroquinone oxidation.
Biochim Biophys Acta. 2004 Apr 12;1655(1-3):77-92. doi: 10.1016/j.bbabio.2003.10.012.
10
The cytochrome bc1 complex: function in the context of structure.
Annu Rev Physiol. 2004;66:689-733. doi: 10.1146/annurev.physiol.66.032102.150251.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验