Suppr超能文献

神经退行性疾病中的线粒体DNA损伤与修复

Mitochondrial DNA damage and repair in neurodegenerative disorders.

作者信息

Yang Jenq-Lin, Weissman Lior, Bohr Vilhelm A, Mattson Mark P

机构信息

Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.

出版信息

DNA Repair (Amst). 2008 Jul 1;7(7):1110-20. doi: 10.1016/j.dnarep.2008.03.012. Epub 2008 May 7.

Abstract

By producing ATP and regulating intracellular calcium levels, mitochondria are vital for the function and survival of neurons. Oxidative stress and damage to mitochondrial DNA during the aging process can impair mitochondrial energy metabolism and ion homeostasis in neurons, thereby rendering them vulnerable to degeneration. Mitochondrial abnormalities have been documented in all of the major neurodegenerative disorders-Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Mitochondrial DNA damage and dysfunction may be downstream of primary disease processes such as accumulation of pathogenic proteins. However, recent experimental evidence demonstrates that mitochondrial DNA damage responses play important roles in aging and in the pathogenesis of neurodegenerative diseases. Therapeutic interventions that target mitochondrial regulatory systems have been shown effective in cell culture and animal models, but their efficacy in humans remains to be established.

摘要

通过产生三磷酸腺苷(ATP)并调节细胞内钙水平,线粒体对于神经元的功能和存活至关重要。衰老过程中的氧化应激和线粒体DNA损伤会损害神经元中的线粒体能量代谢和离子稳态,从而使它们易发生退化。在所有主要的神经退行性疾病——阿尔茨海默病、帕金森病、亨廷顿病和肌萎缩侧索硬化症中,均已记录到线粒体异常。线粒体DNA损伤和功能障碍可能是诸如致病蛋白积累等原发性疾病过程的下游结果。然而,最近的实验证据表明,线粒体DNA损伤反应在衰老和神经退行性疾病的发病机制中起重要作用。针对线粒体调节系统的治疗干预措施在细胞培养和动物模型中已显示出有效性,但其在人类中的疗效仍有待确定。

相似文献

1
Mitochondrial DNA damage and repair in neurodegenerative disorders.
DNA Repair (Amst). 2008 Jul 1;7(7):1110-20. doi: 10.1016/j.dnarep.2008.03.012. Epub 2008 May 7.
2
Mitochondria and neurodegeneration.
Biosci Rep. 2007 Jun;27(1-3):87-104. doi: 10.1007/s10540-007-9038-z.
4
Role of connexins in neurodegenerative diseases (Review).
Mol Med Rep. 2021 May;23(5). doi: 10.3892/mmr.2021.12034. Epub 2021 Mar 24.
5
Mitophagy Regulates Neurodegenerative Diseases.
Cells. 2021 Jul 24;10(8):1876. doi: 10.3390/cells10081876.
6
Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
J Neurol Sci. 2005 Jun 15;233(1-2):145-62. doi: 10.1016/j.jns.2005.03.012.
7
Mitochondrial DNA, base excision repair and neurodegeneration.
DNA Repair (Amst). 2008 Jul 1;7(7):1098-109. doi: 10.1016/j.dnarep.2008.03.011. Epub 2008 May 16.
8
Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases.
Int J Mol Sci. 2019 Nov 30;20(23):6055. doi: 10.3390/ijms20236055.
10
Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders.
Curr Neuropharmacol. 2023;21(5):1165-1183. doi: 10.2174/1570159X20666220830112408.

引用本文的文献

1
Alkaloids as neuroprotectors: targeting signaling pathways in neurodegenerative diseases.
Mol Cell Biochem. 2025 Apr 7. doi: 10.1007/s11010-025-05258-3.
2
Protective effects of harpagoside on mitochondrial functions in rotenone‑induced cell models of Parkinson's disease.
Biomed Rep. 2025 Feb 11;22(4):64. doi: 10.3892/br.2025.1942. eCollection 2025 Apr.
3
Role of Oxidative Stress in Blood-Brain Barrier Disruption and Neurodegenerative Diseases.
Antioxidants (Basel). 2024 Nov 28;13(12):1462. doi: 10.3390/antiox13121462.
4
Hepatic SIRT6 protects against cholestatic liver disease primarily inhibiting bile acid synthesis.
J Biomed Res. 2024 Dec 2;39(4):340-355. doi: 10.7555/JBR.38.20240172.
5
Superoxide dismutase and neurological disorders.
IBRO Neurosci Rep. 2024 Jan 23;16:373-394. doi: 10.1016/j.ibneur.2023.11.007. eCollection 2024 Jun.
6
Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony.
Cell Mol Life Sci. 2023 Oct 30;80(11):342. doi: 10.1007/s00018-023-04992-5.
7
ethanol exposure induces mitochondrial DNA damage and inhibits mtDNA repair in developing brain.
Front Neurosci. 2023 Aug 9;17:1214958. doi: 10.3389/fnins.2023.1214958. eCollection 2023.
8
Cardiolipin externalization mediates prion protein (PrP) peptide 106-126-associated mitophagy and mitochondrial dysfunction.
Front Mol Neurosci. 2023 Jun 2;16:1163981. doi: 10.3389/fnmol.2023.1163981. eCollection 2023.
9
Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease.
Antioxidants (Basel). 2023 Feb 24;12(3):571. doi: 10.3390/antiox12030571.
10
Oxidative Stress and Antioxidants in Neurodegenerative Disorders.
Antioxidants (Basel). 2023 Feb 18;12(2):517. doi: 10.3390/antiox12020517.

本文引用的文献

2
Impact of recent genetic findings in Parkinson's disease.
Curr Opin Neurol. 2007 Aug;20(4):453-64. doi: 10.1097/WCO.0b013e3281e6692b.
3
PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1.
PLoS Biol. 2007 Jul;5(7):e172. doi: 10.1371/journal.pbio.0050172. Epub 2007 Jun 19.
4
Molecular and cellular function of ALS2/alsin: implication of membrane dynamics in neuronal development and degeneration.
Neurochem Int. 2007 Jul-Sep;51(2-4):74-84. doi: 10.1016/j.neuint.2007.04.010. Epub 2007 May 4.
6
Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis.
J Biol Chem. 2007 Jul 13;282(28):20553-60. doi: 10.1074/jbc.M703196200. Epub 2007 May 18.
7
OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells.
Nature. 2007 May 24;447(7143):447-52. doi: 10.1038/nature05778. Epub 2007 Apr 22.
9
Mutant SOD1-induced neuronal toxicity is mediated by increased mitochondrial superoxide levels.
J Neurochem. 2007 Aug;102(3):609-18. doi: 10.1111/j.1471-4159.2007.04502.x. Epub 2007 Mar 23.
10
Parkinson syndrome, neuropathy, and myopathy caused by the mutation A8344G (MERRF) in tRNALys.
Neurology. 2007 Jan 2;68(1):56-8. doi: 10.1212/01.wnl.0000250334.48038.7a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验