Pernthaler Annelie, Dekas Anne E, Brown C Titus, Goffredi Shana K, Embaye Tsegereda, Orphan Victoria J
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):7052-7. doi: 10.1073/pnas.0711303105. Epub 2008 May 8.
Microorganisms play a fundamental role in the cycling of nutrients and energy on our planet. A common strategy for many microorganisms mediating biogeochemical cycles in anoxic environments is syntrophy, frequently necessitating close spatial proximity between microbial partners. We are only now beginning to fully appreciate the diversity and pervasiveness of microbial partnerships in nature, the majority of which cannot be replicated in the laboratory. One notable example of such cooperation is the interspecies association between anaerobic methane oxidizing archaea (ANME) and sulfate-reducing bacteria. These consortia are globally distributed in the environment and provide a significant sink for methane by substantially reducing the export of this potent greenhouse gas into the atmosphere. The interdependence of these currently uncultured microbes renders them difficult to study, and our knowledge of their physiological capabilities in nature is limited. Here, we have developed a method to capture select microorganisms directly from the environment, using combined fluorescence in situ hybridization and immunomagnetic cell capture. We used this method to purify syntrophic anaerobic methane oxidizing ANME-2c archaea and physically associated microorganisms directly from deep-sea marine sediment. Metagenomics, PCR, and microscopy of these purified consortia revealed unexpected diversity of associated bacteria, including Betaproteobacteria and a second sulfate-reducing Deltaproteobacterial partner. The detection of nitrogenase genes within the metagenome and subsequent demonstration of (15)N(2) incorporation in the biomass of these methane-oxidizing consortia suggest a possible role in new nitrogen inputs by these syntrophic assemblages.
微生物在地球上的养分循环和能量循环中发挥着基础性作用。许多在缺氧环境中介导生物地球化学循环的微生物所采用的一种常见策略是互营共生,这通常需要微生物伙伴之间紧密的空间接近性。我们直到现在才开始充分认识到自然界中微生物伙伴关系的多样性和普遍性,其中大多数无法在实验室中复制。这种合作的一个显著例子是厌氧甲烷氧化古菌(ANME)和硫酸盐还原细菌之间的种间关联。这些聚生体在全球环境中广泛分布,通过大幅减少这种强效温室气体向大气中的排放,为甲烷提供了一个重要的汇。这些目前尚未培养的微生物之间的相互依存关系使得它们难以研究,而且我们对它们在自然环境中的生理能力的了解有限。在这里,我们开发了一种方法,利用荧光原位杂交和免疫磁珠细胞捕获相结合的技术,直接从环境中捕获特定的微生物。我们使用这种方法直接从深海海洋沉积物中纯化互营共生厌氧甲烷氧化ANME-2c古菌及其物理关联的微生物。对这些纯化的聚生体进行宏基因组学、聚合酶链反应(PCR)和显微镜观察,揭示了相关细菌意想不到的多样性,包括β-变形菌和另一种硫酸盐还原δ-变形菌伙伴。在宏基因组中检测到固氮酶基因,以及随后证明这些甲烷氧化聚生体的生物量中掺入了(15)N2,这表明这些互营共生组合在新氮输入中可能发挥作用。